80003 (674858), страница 4

Файл №674858 80003 (Системный анализ и управление логистическими системами) 4 страница80003 (674858) страница 42016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

3у1 + 5 у2 +6у3 40 ,

5у1 + 6 у2 +5у3 70 , y1, y2, y3>0.

Т

{

*(у)= 1800у1 + 2100у2 + 2400у3 + 0y4 + 0y5 + 0y6;

4у1 + 3 у2 + у3 - y4 = 30,

3у1 + 5 у2 + 6у3 - y5 = 40,

5у1 + 6 у2 + 5у3 -y6 = 70 .

В таблице 1 находиться оптимальное решение двойственной задачи и исходя из этого ответ ДЗ следующий:

у1 =0,у2=11,66, у3=0, у4=5, у5= 18,3, у6= 0.

1800*0 + 2100*11,66+ 2400*0 24500.

Основные переменные ДЗ характеризуют оценки ресурсов, т.е экономический смысл теории двойственности следующий: "Какие минимальные цены необходимо назначить на дефицитные ресурсы, чтобы стоимость их была не меньше, чем выручка от реализации продукции предприятия".

Установим соответствия между переменными исходной и двойственной задачами.

X1

X2

X3

X4

X5

X6

0

0

350

50

0

650

5

18, 3

0

0

11,7

0

у4

у5

у6

у1

у2

у3

3. Экономический смысл последней симплекс -таблицы.

В данной ЗЛП основными переменными симплекс-таблицы являются переменные Х1, Х2, Х3 (продукция), дополнительными Х4, Х5, Х6 (ресурсы).

Кроме того, базисные переменные - Х4, Х3, Х6, небазисные Х1, Х2, Х5.

  • При закупке единицы второго ресурса Р2 остаток Р1 уменьшится на 0,83 е.д., производство П3 увеличится на 0,166 шт., а остаток третьего ресурса Р3 снизится на 0,17 станко/час. Анализ основной двойственной переменной (при закупке второго ресурса) показал, что в денежном выражении она составила: 70*0,166 = 11,66 д.е.

  • Анализ основных небазисных переменных (не выгодно выпускать х1,х2) показал, что если выпускать одну единицу изделия П1, то остаток Р1 уменьшиться на 1,5 д.е., производство третьего изделия П3 уменьшится на 0,5 шт, а эксплуатация оборудования увеличится на 1,5 станко/час. При этом убыток от этой операции составит в денежном выражении: 70 * 0,5= 35 д.е. абсолютный убыток : 35-30=5 д.е. (=у1); если же выпускать одну единицу изделия П2, то в этом случае остаток первого ресурса Р1 увеличится на 1,17 д.е., выпуск изделия П3 уменьшится на 0,833 шт.,а при использование оборудования уменьшится на 1,83 станко/час. При этом убыток составит 70 * 0,833 = 58,3 д.е., абсолютный убыток: 58,3 - 40 = 18,3 д.е. (=у2).

4. Внутрипроизводственная логистическая система должна гибко реагировать на изменение входящих потоков и цен за единицу выпускаемой продукции, при котором можно использовать полученные оптимальные решения данной задачи.

а) Изменение входящих ресурсных потоков:

  • в1 - изменение запаса материала (д.е),

  • в2 - изменение количества трудовых ресурсов (чел/час),

  • в

    [

    ]

    [

    1800

    2100

    2400

    ]

    3 - изменение фонда рабочего времени оборудования (станко/час).

х

= A -1* B; В =

4

х

Б

5

х6

Новое значение переменных , вошедших в оптимальное решение задачи в базис х3*, х4*, х6*, можно рассчитать как результат перемножения матриц.

[

]

1 -0,833 0

0 0,166 0

0 -0,83 1

[

]

1800 + в1

2100 + в2

2400 + в3


A

Б

-1 = И В*

{


х4*= 1(1800 + в1) + (-0,833)(2100 + в2) + 0(2400 + в3) 0,

х3*= 0 (1800 + в1) + 0,166(2100 + в2) + 0 (2400+ в3) 0, (1)

х6*= 0(1800 + в1) + (-0,833)(2100 + в2)+ 1(2400 + в3) 0,

Пусть в2 0, в1 и в3 =0, т.е. изменяется количество трудовых ресурсов.

{


х4*= 1800 - 0,833 в2 - 1743 0,

х3*= 0 + 0,166 в2 + 0 0,

х6*= 0 - 0,833 в2 - 357 + 2400 0,

Выразим в2 и найдем решение неравенств.

{

{

в2 68,67,

в2 -2100,

в2 780.3,


- 0,833 в2 + 57 0,

0,166 в2 + 348,6 0,

- 0,833 в2 + 2051,4 0,


-2100 68,67 780.3

-2100 < в2 < 68.87 , запас дефицитного ресурса Р2 изменяется в найденном интервале. Если этот запас будет изменятся в этом интервале, то с ассортимент выпускаемой продукции и выручка от реализации тоже будут меняться.

П

{

усть в1 0, в2 и в3 =0, т.е. изменяется запас материалов, то подставив значения в систему 1 получим следующее:

{

х4*= 1800 + в1 - 1750 0,

х3*= 0 + 348,6 0,

х6*= 0 - 1750 + 2400 0,

х4*= в1 +50 0,

х3*= 348,6 0,

х6*= 650 0,


Решением неравенства будет следующее : в1 > - 50. Если запас недефицитного ресурса Р1 будет снижаться не больше, чем на 50 д.е., то в оптимальном плане изменяется только неиспользованный остаток первого ресурса. 0

П

{

{

усть в3 0, в2 и в1 =0, т.е. изменяется òðåòèé ðåñóðñ, то подставив значения в исходную систему 1 получим следующее:

х4*= 50 0,

х3*= 348,6 0 ,

х6*= в3 + 650 0

х4*= 1800 + 1750 ,

х3*= 0 + 348,6 0 ,

х6*= в3 - 1750 + 2400 0 ,

Решением неравенства будет следующее : в3 > - 650. Если запас недефицитного ресурса Р3 будет снижаться не больше, чем на 650 станкочасов., то в оптимальном плане изменяется только неиспользованный остаток третьего ресурса.

б) Изменение цен за единицу выпускаемой продукции (коэффициентов целевой функции С).

П

{

С1* = 30 + С1,

С2*= 40 + С2,

С3* = 70 + С3,

С4* = 0 + С4,

С5* = 0 + С5,

С6* = 0 + С6,

усть С изменяется на С, то получим следующую систему:

Тогда -оценки в последней симплекс таблице примут новые значения. Чтобы ранее найденное решение осталось оптимальным, изменение коэффициентов С целевой функции допустимо в таком интервале, для которого - оценки остаются неотрицательными.


{


1 = (0 + С4)1,5 + (70 + С3)0,5 + (-1,5)(0 + С6) - (30 + С1) 0,

2 = (0 + С4)(-1,17) + (70 + С3)0,833 + 1,833(0 + С6) - (40 + С2) 0,

5 = (0 + С4)(-0,833) + (70 + С3)0,166 + (- 0,833)(0 + С6) - (0 + С5) 0,

П

{

{

усть С1 0, а С2= С3= С4= С5= С6=0, то получим:

1 = 35-30 + С1 0,

2 = 58,31 - 40 0

5 = 11,62 0,

1 = 5 - С1 0,

2 = 18,31 0

5 = 11,62 0,


Решением данного неравенства будет С1 < 5. При цене 4,9 д.е. продукцию П1 производить не выгодно, при уменьшении цены П1 эту продукцию также не выгодно производить, но увеличении цену можно не более, чем на 5 д.е. При этом оптимальный план не изменится.

П

{

{

усть С2 0, а С1= С3= С4= С5= С6=0, то получим:

1 = 35-30 0,

2 = 58,31 - 40 + С2 0

5 = 11,62 0,

1 = 5 0,

2 = 18,31 + С2 0

5 = 11,62 0,

Решением данного неравенства будет С2 < 18,31. При цене 18 д.е. продукцию П2 производить не выгодно, при уменьшении цены П2 эту продукцию также не выгодно производить, но увеличении цену можно не более, чем на 18,31 д.е. При этом оптимальный план не изменится.

П

{

усть С3 0, а С1= С2= С4= С5= С6=0, то получим:

{

1 = 35-30 + 0,5 С3 0,

2 = 58,31 - 40 + 0,833 С3 0

5 = 11,62 + 0,166 С3 0,

С3 -10,

С3 -21.98

C3 -69,75,



-69.75 -21.98 -10

Решением данного неравенства будет С3 от -10 ло + . При изменении цены на продукцию П3 в данном интервале, ассортимент и объемы выпуска продукции не меняются, а выручка от реализации станет другой.

5. В условиях конкуренции стоящая перед предприятием задача меняется, при этом можно использовать следующую оптимальную модель. Условием этой задачи будет являться определение экономического результата, при котором затраты на производство должны быть минимальны нормы расхода на производства одного изделия.

Числовая модель в данном случае будет следующая:

L2 (x) min = 21 x1 + 30 x2 + 56 x3 ,

{

4x1+ 3x2 + 5x3 1800 ,

3x1+ 5x2 + 6x3 2100 ,

x1+ 6x2 + 5x3 2400 ;

21 x1 + 30 x2 + 56 x3 11025 (45% от L1 max).


x1, x2, x3 > 0

Приведем к каноническому виду данную систему:

L2 (x) min = 21 x1 + 30 x2 + 56 x3 + 0x4 + 0x5 + 0x6 + 0x7,

{


4x1+ 3x2 + 5x3 + x4= 1800 ,

3x1+ 5x2 + 6x3 + x5= 2100 ,

x1+ 6x2 + 5x3 + x6 = 2400 ;

21 x1 + 30 x2 + 56 x3 - x7= 11025.

x1, x2, x3, x4, x5, x6, x7> 0

Так как х7 не является базисной (перед переменной стоит коэффициент-1), то для решения данной задачи используем метод искусственного базиса. Для этого в четвертое ограничение введем неотрицательную искусственную переменную х8', которая в целевой функции записывается с коэффициентом М.

L2 (x) min = 21 x1 + 30 x2 + 56 x3 + 0x4 + 0x5 + 0x6 + 0x7 + Мх8',

П

{

олучим расширенную задачу:

4x1+ 3x2 + 5x3 + x4 = 1800,

Характеристики

Тип файла
Документ
Размер
1,37 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее