61989 (674269), страница 2

Файл №674269 61989 (Искусственный интеллект в управлении фирмой) 2 страница61989 (674269) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

В идеальном варианте после предварительной обработки мы должны получить линейно разделимую задачу, так как после этого значительно упрощается построение классификатора. К сожалению, при решении реальных задач мы имеем ограниченное количество образцов, на основании которых и производится построение классификатора. При этом мы не можем провести такую предобработку данных, при которой будет достигнута линейная разделимость образцов.

2. Использование нейронных сетей в качестве классификатора.

Сети с прямой связью являются универсальным средством аппроксимации функций, что позволяет их использовать в решении задач классификации. Как правило, нейронные сети оказываются наиболее эффективным способом классификации, потому что генерируют фактически большое число регрессионных моделей (которые используются в решении задач классификации статистическими методами).

К сожалению, в применении нейронных сетей в практических задачах возникает ряд проблем. Во-первых, заранее не известно, какой сложности (размера) может потребоваться сеть для достаточно точной реализации отображения. Эта сложность может оказаться чрезмерно высокой, что потребует сложной архитектуры сетей. Так Минский в своей работе "Персептроны" доказал, что простейшие однослойные нейронные сети способны решать только линейно разделимые задачи. Это ограничение преодолимо при использовании многослойных нейронных сетей. В общем виде можно сказать, что в сети с одним скрытым слоем вектор, соответствующий входному образцу, преобразуется скрытым слоем в некоторое новое пространство, которое может иметь другую размерность, а затем гиперплоскости, соответствующие нейронам выходного слоя, разделяют его на классы. Таким образом сеть распознает не только характеристики исходных данных, но и "характеристики характеристик", сформированные скрытым слоем.

3. Подготовка исходных данных

Для построения классификатора необходимо определить, какие параметры влияют на принятие решения о том, к какому классу принадлежит образец. При этом могут возникнуть две проблемы. Во-первых, если количество параметров мало, то может возникнуть ситуация, при которой один и тот же набор исходных данных соответствует примерам, находящимся в разных классах. Тогда невозможно обучить нейронную сеть, и система не будет корректно работать (невозможно найти минимум, который соответствует такому набору исходных данных). Исходные данные обязательно должны быть непротиворечивы. Для решения этой проблемы необходимо увеличить размерность пространства признаков (количество компонент входного вектора, соответствующего образцу). Но при увеличении размерности пространства признаков может возникнуть ситуация, когда число примеров может стать недостаточным для обучения сети, и она вместо обобщения просто запомнит примеры из обучающей выборки и не сможет корректно функционировать. Таким образом, при определении признаков необходимо найти компромисс с их количеством.

Далее необходимо определить способ представления входных данных для нейронной сети, т.е. определить способ нормирования. Нормировка необходима, поскольку нейронные сети работают с данными, представленными числами в диапазоне 0..1, а исходные данные могут иметь произвольный диапазон или вообще быть нечисловыми данными. При этом возможны различные способы, начиная от простого линейного преобразования в требуемый диапазон и заканчивая многомерным анализом параметров и нелинейной нормировкой в зависимости от влияния параметров друг на друга.

4. Кодирование выходных значений.

Задача классификации при наличии двух классов может быть решена на сети с одним нейроном в выходном слое, который может принимать одно из двух значений 0 или 1, в зависимости от того, к какому классу принадлежит образец. При наличии нескольких классов возникает проблема, связанная с представлением этих данных для выхода сети. Наиболее простым способом представления выходных данных в таком случае является вектор, компоненты которого соответствуют различным номерам классов. При этом i-я компонента вектора соответствует i-му классу. Все остальные компоненты при этом устанавливаются в 0. Тогда, например, второму классу будет соответствовать 1 на 2 выходе сети и 0 на остальных. При интерпретации результата обычно считается, что номер класса определяется номером выхода сети, на котором появилось максимальное значение. Например, если в сети с тремя выходами мы имеем вектор выходных значений (0.2,0.6,0.4), то мы видим, что максимальное значение имеет вторая компонента вектора, значит класс, к которому относится этот пример, – 2. При таком способе кодирования иногда вводится также понятие уверенности сети в том, что пример относится к этому классу. Наиболее простой способ определения уверенности заключается в определении разности между максимальным значением выхода и значением другого выхода, которое является ближайшим к максимальному. Например, для рассмотренного выше примера уверенность сети в том, что пример относится ко второму классу, определится как разность между второй и третьей компонентой вектора и равна 0.6-0.4=0.2. Соответственно чем выше уверенность, тем больше вероятность того, что сеть дала правильный ответ. Этот метод кодирования является самым простым, но не всегда самым оптимальным способом представления данных.

Известны и другие способы. Например, выходной вектор представляет собой номер кластера, записанный в двоичной форме. Тогда при наличии 8 классов нам потребуется вектор из 3 элементов, и, скажем, 3 классу будет соответствовать вектор 011. Но при этом в случае получения неверного значения на одном из выходов мы можем получить неверную классификацию (неверный номер кластера), поэтому имеет смысл увеличить расстояние между двумя кластерами за счет использования кодирования выхода по коду Хемминга, который повысит надежность классификации.

Другой подход состоит в разбиении задачи с k классами на k*(k-1)/2 подзадач с двумя классами (2 на 2 кодирование) каждая. Под подзадачей в данном случае понимается то, что сеть определяет наличие одной из компонент вектора. Т.е. исходный вектор разбивается на группы по два компонента в каждой таким образом, чтобы в них вошли все возможные комбинации компонент выходного вектора. Число этих групп можно определить как количество неупорядоченных выборок по два из исходных компонент. Из комбинаторики

Тогда, например, для задачи с четырьмя классами мы имеем 6 выходов (подзадач) распределенных следующим образом:

подзадачи(выхода)

КомпонентыВыхода

1

1-2

2

1-3

3

1-4

4

2-3

5

2-4

6

3-4

Где 1 на выходе говорит о наличии одной из компонент. Тогда мы можем перейти к номеру класса по результату расчета сетью следующим образом: определяем, какие комбинации получили единичное (точнее близкое к единице) значение выхода (т.е. какие подзадачи у нас активировались), и считаем, что номер класса будет тот, который вошел в наибольшее количество активированных подзадач (см. таблицу).

класса

Акт. Выходы

1

1,2,3

2

1,4,5

3

2,4,6

4

3,5,6

Это кодирование во многих задачах дает лучший результат, чем классический способ кодирование.

5. Выбор объема сети.

Правильный выбор объема сети имеет большое значение. Построить небольшую и качественную модель часто бывает просто невозможно, а большая модель будет просто запоминать примеры из обучающей выборки и не производить аппроксимацию, что, естественно, приведет к некорректной работе классификатора. Существуют два основных подхода к построению сети – конструктивный и деструктивный. При первом из них вначале берется сеть минимального размера, и постепенно увеличивают ее до достижения требуемой точности. При этом на каждом шаге ее заново обучают. Также существует так называемый метод каскадной корреляции, при котором после окончания эпохи происходит корректировка архитектуры сети с целью минимизации ошибки. При деструктивном подходе вначале берется сеть завышенного объема, и затем из нее удаляются узлы и связи, мало влияющие на решение. При этом полезно помнить следующее правило: число примеров в обучающем множестве должно быть больше числа настраиваемых весов. Иначе вместо обобщения сеть просто запомнит данные и утратит способность к классификации – результат будет неопределен для примеров, которые не вошли в обучающую выборку.

6. Выбор архитектуры сети.

При выборе архитектуры сети обычно опробуется несколько конфигураций с различным количеством элементов. При этом основным показателем является объем обучающего множества и обобщающая способность сети. Обычно используется алгоритм обучения Back Propagation (обратного распространения) с подтверждающим множеством.

7. Алгоритм построения классификатора на основе нейронных сетей.

  1. Работа с данными

    1. Составить базу данных из примеров, характерных для данной задачи

    2. Разбить всю совокупность данных на два множества: обучающее и тестовое (возможно разбиение на 3 множества: обучающее, тестовое и подтверждающее).

  2. Предварительная обработка

    1. Выбрать систему признаков, характерных для данной задачи, и преобразовать данные соответствующим образом для подачи на вход сети (нормировка, стандартизация и т.д.). В результате желательно получить линейно отделяемое пространство множества образцов.

    2. Выбрать систему кодирования выходных значений (классическое кодирование, 2 на 2 кодирование и т.д.)

  3. Конструирование, обучение и оценка качества сети:

    1. Выбрать топологию сети: количество слоев, число нейронов в слоях и т.д.

    2. Выбрать функцию активации нейронов (например "сигмоида")

    3. Выбрать алгоритм обучения сети

    4. Оценить качество работы сети на основе подтверждающего множества или другому критерию, оптимизировать архитектуру (уменьшение весов, прореживание пространства признаков)

    5. Остановится на варианте сети, который обеспечивает наилучшую способность к обобщению и оценить качество работы по тестовому множеству.

  4. Использование и диагностика

    1. Выяснить степень влияния различных факторов на принимаемое решение (эвристический подход).

    2. Убедится, что сеть дает требуемую точность классификации (число неправильно распознанных примеров мало)

  5. При необходимости вернутся на этап 2, изменив способ представления образцов или изменив базу данных.

  6. Практически использовать сеть для решения задачи.

Прогнозирование объёма продаж кондитерских изделий с помощью нейронных сетей.

1. Постановка задачи

Объем продаж – один из ключевых показателей, характеризующих деятельность коммерческой фирмы. Поэтому задача прогнозирования объема продаж представляет собой большой интерес, например, для компаний, которые занимаются оптовой торговлей. Товароведам необходимо знать примерное количество продукции, которое они смогут реализовать в ближайшее время, для того, чтобы, с одной стороны, иметь достаточное количество товаров на складе, а с другой – не перегрузить склады продукцией, что особенно актуально, если продукция имеет небольшой срок хранения.

В большинстве случаев объем продаж того или иного товара поддается прогнозу. Например, многие товары продаются в соответствие с ярко выраженной сезонной составляющей, что легко определяется при помощи аналитических технологий. С их помощью можно прогнозировать объемы продаж по всем товарным позициям, что особенно актуально в случае их большого количества. При необходимости можно также учитывать и дополнительные факторы, например, рекламную компанию, конъюнктуру рынка, действия конкурентов и т.д. Комплексный учет всех факторов может значительно повысить качество прогноза.

2. Метод решения

Проиллюстрировать решение данной задачи мы сможем на примере прогнозирования объема продаж мармелада 'Лимонные дольки' на основе реальных данных компании, занимающейся оптовыми продажами кондитерских изделий. Прогнозирование объема продаж построим только на основе истории продаж по данной товарной позиции за определенный период. Эта информация собирается в базу данных, состоящую из двух колонок: дата и продажи в количественном выражении. В нашем случае история продаж разбита по неделям, соответственно, прогнозировать мы также будем на одну или несколько недель (исходные данные здесь).

Для получения качественного прогноза нам необходимо провести предварительную обработку данных при помощи программы RawData Analyzer, входящей в состав пакета Deductor. Во-первых, данные по истории продаж следует сгладить, т.к. по зашумленным данным достаточно сложно установить зависимость изменения объема продаж. После сглаживания данных при помощи вейвлетов динамика изменений определяется и прогнозируется гораздо качественнее.


Пояснение к рисунку: тёмным цветом отображены реальные данные, светлым – сглаженные.

Характеристики

Тип файла
Документ
Размер
157 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6310
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее