47999 (665969), страница 2

Файл №665969 47999 (Особенности развития, структурная и функциональная организация суперЭВМ) 2 страница47999 (665969) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Параллельная вычислительная система с общей памятью и шинной организацией обмена (машина 1) позволяет каждому процессору системы видеть", как решается задача в целом, а не только те части, над

Типы передачи Сообщений

Типы памяти

Общая память

Общая и распределенная

Распределенная память

Шинные соединения

1.

2.

3.

Фиксирован-ные перекрест-ные соедине-ния

4.

5.

6.

Коммутацион-ные структуры

7.

8.

9.

Таблица 2.6 – Классификация МВС по типам памяти и передачи сообщений которыми он работает. Общая шина, связанная с памятью, вызывает серьезные проблемы для обеспечения высокой пропускной способности каналов обмена. Одним из способов обойти эту ситуацию является использование кэш-памяти (машина 2). В этом случае возникает проблема когерентности содержимого кэш-памяти и основной. Другим способом повышения производительности систем является отказ от центральной памяти (машина 3).

Идеальной машиной является вычислительная система, у которой каждый процессор имеет прямые каналы связи с другими процессорами, но в этом случае требуется чрезвычайно большой объем оборудования для организации межпроцессорных обменов. Определенный компромисс представляет сеть с фиксированной топологией, в которой каждый процессор соединен с некоторым подмножеством процессоров системы. Если процессорам, не имеющим непосредственного канала обмена, необходимо взаимодействовать, они передают сообщения через промежуточные процессоры. Одно из преимуществ такого подхода - не ограничивается рост числа процессоров в системе. Недостаток - требуется оптимизация прикладных программ, чтобы обеспечить выполнение параллельных процессов, для которых необходимо активное воздействие на соседние процессоры.

Наиболее интересным вариантом для перспективных параллельных вычислительных комплексов является сочетание достоинства архитектур с распределенной памятью и каналами межпроцессорного обмена. Один из возможных методов построения таких комбинированных архитектур - конфигурация с коммутацией, когда процессор имеет локальную память, а соединяются процессоры между собой с помощью коммутатора (машина 9). Коммутатор может оказаться весьма полезным для группы процессоров с распределяемой памятью (машина 8). Данная конфигурация похожа на машину с общей памятью (машина 7), но здесь исключены проблемы пропускной способности шины.

Недостатками классификации Т.Джона является скрытие уровня параллелизма в системе.

Параллелизм любого рода требует одновременной работы, по крайней мере, двух устройств. Такими устройствами могут быть: арифметико-логические устройства (АЛУ), устройства управления (УУ). В ЭВМ классической архитектуры УУ и АЛУ образуют процессор. Увеличение числа процессоров или числа АЛУ в каждом из них приводит к соответствующему росту параллелизма. Наличие в ЭВМ нескольких процессоров означает, что одновременно (параллельно) могут выполняться несколько программ или несколько фрагментов одной программы. Работа нескольких АЛУ под управлением одного УУ означает, что множество данных может обрабатываться параллельно по одной программе. В соответствии с этим описание структур параллельных систем можно представить в виде упорядоченной тройки:

,

где k - количество устройств управления, т.е. наибольшее количество независимо и одновременно выполняемых программ в системе;

d - количество АЛУ, приходящихся на одно устройство управления;

w - количество разрядов, содержимое которых обрабатывается одновременно (параллельно) одним арифметико-логическим устройством.

Другая форма распараллеливания - конвейеризация, также требует наличия нескольких ЦП или АЛУ. В то время, как множество данных обрабатывается на одном устройстве, другое множество данных может обрабатываться на следующем устройстве и т.д., при этом в процессе обработки возникает поток данных от одного устройства (ЦП или АЛУ) к следующему. В течение всего процесса над одним множеством данных выполняется одно за другим n действий. Одновременно в конвейере на разных стадиях обработки могут находиться от 1 до n данных.

Параллелизм и конвейеризацию можно рассматривать на трех различных уровнях, представленных в таблице 2.7. Шесть основных форм параллелизма, в широком смысле этого слова, позволяют построить схему классификации, в рамках которой можно описать разнообразие высокопроизводительных вычислительных систем и отразить их эволюцию.

Таблица 2.7 – Классификация МВС по типу распараллеливания

Уровень

параллелизма

Параллелизм

Конвейеризация

Программы

Мультипроцессор

Макроконвейер

Команды

Матричный процессор

Конвейер команд

Данные

Множество разрядов

Арифметический

конвейер

3. ОСНОВНЫЕ КОНЦЕПЦИИ ПРОЕКТИРОВАНИЯ СУПЕРЭВМ

В векторных суперЭВМ обеспечена предельная производительность для процессов скалярной и векторной обработки, которая присутствует в большинстве задач. Задачи, содержащие высокую степень внутреннего параллелизма, могут быть хорошо адаптированы к системам массового параллелизма. Реальные задачи и, тем более, пакеты задач содержат целый ряд алгоритмов, имеющих различные уровни параллелизма.

Все это говорит о том, что вместо попыток приспособить все типы алгоритмов к одной архитектуре, что отражается на конфигурации архитектур и сопровождается не всегда корректными сравнениями пиковой производительности, более продуктивным является взаимодополнение архитектур в единой системе. Одним из первых примеров такой системы является объединение векторной системы Cray Y-XM с системой Cray T3D. Однако, это объединение с помощью высокоскоростного канала приводит к необходимости разбиения задач на крупные блоки и к потерям времени и памяти на обмен информацией.

Ситуация в данном случае подобна той, которая существовала до появления векторных машин. Для решения задач, содержащих большое число операций над векторами и матрицами, использовались так называемые матричные процессоры, например, фирмы FSP, которые подключались к универсальной машине с помощью канала ввода/вывода. Интеграция скалярной и векторной обработки в одном процессоре наряду с обеспечением высокой скорости работы синхронного конвейера обеспечила успех векторных машин.

Следующим логическим шагом является интеграция скалярной, векторной и параллельной обработки. Благодаря этому, может быть достигнута высокая реальная производительность за счет распределения отдельных частей программы по подсистемам с различной архитектурой. Естественно, это распределение работы должно быть поддержано аппаратно-программными средствами автоматизации программирования. Эти средства должны содержать возможность интерактивного вмешательства программиста на этапе анализа задачи и возможность моделирования или пробного запуска программы с измерением параметров эффективности. Следует подчеркнуть, что формы параллелизма в алгоритмах достаточно разнообразны, поэтому и их аппаратное отражение может быть различным. К наиболее простым можно отнести системы с одним потоком команд и множественными потоками данных, системы с множественными потоками команд и данных, систолические системы.

Одним из многообещающих подходов, обеспечивающих автоматическое распараллеливание, является принцип потока данных, при котором последовательность или одновременность вычислений определяется не командами, а готовностью операндов и наличием свободного функционального арифметического устройства. Однако, и в этом случае степень реального распараллеливания зависит от внутреннего параллелизма алгоритма и, очевидно, нужны эффективные способы подготовки задач. Кроме того, для реализации таких систем необходимо создание ассоциативной памяти для поиска готовых к работе пар операндов и систем распределения вычислений по большому числу функциональных устройств.

Аппаратная реализация параллельных подсистем полностью зависит от выбранных микропроцессоров, БИС памяти и других компонентов. В настоящее время по экономическим причинам целесообразно использовать наиболее высокопроизводительные микропроцессоры, разработанные для унипроцессорных машин.

Вместе с тем, существуют подходы, связанные с применением специализированных микропроцессоров, ориентированных на использование в параллельных системах. Типичным примером является серия транспьютеров фирмы Inmos. Однако, из-за ограниченного рынка эта серия по производительности резко отстала от универсальных микропроцессоров, таких, как Alpha, Power PC, Pentium. Специализированные микропроцессоры смогут быть конкурентноспособными только при условии сокращения расходов на проектирование и освоение в производстве, что в большой степени зависит от производительности инструментальных вычислительных средств, используемых в системах автоматизированного проектирования.

В различных вычислительных машинах использовались различные подходы, направленные на достижение, в первую очередь, одной из следующих целей:

  • максимальная арифметическая производительность процессора;

  • эффективность работы операционной системы и удобство общения с ней для программиста;

  • эффективность трансляции с языков высокого уровня и исключение написания программ на автокоде;

  • эффективность распараллеливания алгоритмов для параллельных архитектур.

Однако, в любой машине необходимо в той или иной форме решать все указанные задачи. Отметим, что сначала этого пытались достичь с помощью одного или нескольких одинаковых процессоров.

Дифференциация функций и специализация отдельных подсистем начала развиваться с появления отдельных подсистем и процессоров для обслуживания ввода/вывода, коммуникационных сетей, внешней памяти и т.п.

В суперЭВМ кроме основного процессора (машины) включались внешние машины. В различных системах можно наблюдать элементы специализации в направлениях автономного выполнения функций операционной системы, системы программирования и подготовки заданий.

Во-первых, эти вспомогательные функции могут выполняться параллельно с основными вычислениями. Во-вторых, для реализации не требуются многие из тех средств, которые обеспечивают высокую производительность основного процессора, например, возможность выполнения операций с плавающей запятой и векторных операций. В дальнейшем, при интеграции скалярной, векторной и параллельной обработки в рамках единой вычислительной подсистемы состав этих вспомогательных функций должен быть дополнен функциями анализа программ с целью обеспечения требуемого уровня параллелизма и распределения отдельных частей программы по различным ветвям вычислительной подсистемы.

Появление суперЭВМ сопровождалось повышением их общей мощности потребления (выше 100 кВт) и увеличением плотности тепловых потоков на различных уровнях конструкции. Их создание не в последнюю очередь оказалось возможным, благодаря использованию эффективных жидкостных и фреоновых систем охлаждения. Является ли значительная мощность существенным признаком суперЭВМ? Ответ на этот вопрос зависит от того, что вкладывается в понятие суперЭВМ.

Характеристики

Тип файла
Документ
Размер
792,75 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее