47509 (665840), страница 2

Файл №665840 47509 (Линейное программирование) 2 страница47509 (665840) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

4.1. Стандартная форма линейных оптимизационных моделей

  1. Все ограничения записываются в виде равенств с неотрицательной правой частью. Исходное ограничение можно представить в виде равенства, прибавляя остаточную переменную к левой части ограничения (вычитая избыточную переменную из левой части).

Например,

Введём остаточную переменную s1>0, тогда

Правую часть равенства можно сделать неотрицательной, умножив обе части на –1.

  1. Значения всех переменных модели неотрицательны.
    Любую переменную yi, не имеющую ограничения в знаке, можно представить как разность двух неотрицательных переменных:

При любом допустимом решении только одна из этих переменных может принимать положительное значение, т.к. если , то , и наоборот. Это позволяет рассматривать как остаточную переменную, а – как избыточную.

  1. Целевая функция подлежит максимизации или минимизации.
    Максимизация некоторой функции эквивалентна минимизации той же функции, взятой с противоположным знаком, и наоборот.
    Эквивалентность означает, что при одной и той же совокупности ограничений оптимальные значения переменных в обоих случаях будут одинаковы.

4.2. Симплекс-метод

Общую идею симплекс-метода проиллюстрируем на примере модели для задачи фирмы Reddy Mikks. На исходная точка алгоритма – начало координат (т. A) – начальное решение. От исходной точки осуществляется переход к некоторой смежной угловой точке (т. B или т. F). Её выбор зависит от коэффициентов целевой функции. Т.к. коэффициент при x­E больше коэффициента при xI, а целевая функция подлежит максимизации, требуемое направление перехода соответствует увеличению x­E (т. B). Далее указанный процесс повторяется для выяснения, существует ли другая экстремальная точка, соответствующая лучшему допустимому решению.

Правила выбора экстремальной точки:

  1. Каждая последующая угловая точка должна быть смежной с предыдущей.

  2. Обратный переход к предшествующей экстремальной точке не может производиться.

Чтобы описать рассмотренные процедуры формальными способами, необходимо определить пространство решений и угловые точки алгебраически. Требуемые соотношения устанавливаются по таблице:

Геометрическое определение (графический метод)

Алгебраическое определение (симплекс-метод)

Пространство решений

Ограничения модели стандартной формы

Угловые точки

Базисные решения задачи в стандартном виде

4.2.1. Представление пространства решений стандартной задачи ЛП.

Модель:

максимизировать целевую функцию

при ограничениях

На – пространство решений. Каждую точку можно определить с помощью

Для идентификации нужной точки воспользуемся тем, что при ограничения модели эквивалентны равенствам, которые представляются соответствующими рёбрами пространства решений.

Анализируя , заметим, что

можно упорядочить, исходя из того, какое значение (нулевое или ненулевое) имеет данная переменная в экстремальной точке.

Экстр.

переменные

точка

нулевые

ненулевые

A

B

C

D

E

F

Из таблицы выделим закономерности:

  1. Стандартная модель содержит четыре уравнения и шесть неизвестных, поэтому в каждой из экстремальных точек (6–4) переменные должны иметь нулевые значения.

  2. Смежные экстремальные точки отличаются только одной переменной в каждой группе (нулевых и ненулевых переменных).

Если линейная модель стандартной формы содержит уравнений и

неизвестных, то все допустимые экстремальные точки определяются как все однозначные неотрицательные решения системы уравнений, в которых m-n переменных равны нулю. Однозначные решения такой системы – базисные решения. Если они удовлетворяют требованию неотрицательности правых частей, то это – допустимое базисное решение. Переменные, равные нулю – небазисные, остальные – базисные. Каждую следующую экстремальную точку можно определить определить путём замены одной из текущих небазисных переменных текущей базисной переменной. В нашем примере при переходе из т. A в т. B необходимо увеличивать небазисную переменную от исходного нулевого значения до значения, соответствующего т. B. В т. B s2 обращается в нуль (становится небазисной). Т.о., происходит взаимообмен x­E и s2 между небазисными и базисными переменными.

Включаемая переменная – небазисная в данный момент переменная, которая будет включена в множество базисных переменных на следующей итерации. Исключаемая переменная – базисная в данный момент переменная, которая на следующей итерации подлежит исключению из множества базисных переменных.

4.2.2 Вычислительные процедуры симплекс-метода

Симплекс-алгоритм:

Шаг 0: Используя линейную модель стандартной формы, определяют НДБР путём приравнивания к нулю n-m (небазисных) переменных.

Шаг 1: Из числа текущих небазисных переменных выбирается включаемая в новый базис переменная, увеличение которой обеспечивает улучшение значения целевой функции. Если её нет -- текущее базисное решение оптимально, иначе переход к Шагу 2.

Шаг 2: Из числа переменных текущего базиса выбирается исключаемая переменная, которая должна стать небазисной при введении в состав базиса новой переменной.

Шаг 3: Находится новое базисное решение, соответствующее новым составам базисных и небазисных переменных. Переход к Шагу 1.

Если x­E=xI=0, то

(соответствует точке A Ha ) – начальное допустимое решение.

Решение

-3

-2

2

6

2

8

-1

2

Если в задаче максимизации все небазисные переменные в -уравнении имеют неотрицательные коэффициенты, полученное пробное решение является оптимальным. Иначе в качестве новой базисной переменной следует выбрать ту, которая имеет наибольший по абсолютной величине отрицательный коэффициент. Применяя это условие к исходной таблице – переменная, включаемая в базис.

Процедура выбора подключаемой переменной предполагает проверку условия допустимости, требующего, чтобы в качестве исключаемой переменной выбиралась та (из текущего базиса), которая первой обращается в нуль при увеличении включаемой переменной вплоть до значения, соответствующего смежной экстремальной точке.

Отношение, идентифицирующее исключаемую переменную, можно определить из симплекс-таблице. Для этого в столбце вводимой переменной вычёркиваются отрицательные и нулевые элементы ограничений. Затем вычисляются отношения постоянных из правых частей ограничений к оставшимся элементам столбца. Исключаемая переменная – та, для которой это отношение минимально.

Решение

Отношение

-3

-2

-

2

6

2

8

-1

-

2

-

Столбец, ассоциированный с вводимой переменной – ведущий столбец; строка, соответствующая исключаемой переменной – ведущая строка; на их пересечении – ведущий элемент.

Характеристики

Тип файла
Документ
Размер
5,42 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее