47343 (665767), страница 3
Текст из файла (страница 3)
При этом, для равномерно-распределенного процесса .
Дифференциальная энтропия сигнала с равномерным распределением
.
Разность дифференциальных энтропий нормального и равномерно распределенного процесса не зависит от величины дисперсии
= 0,3 бит/отсч.
Таким образом, пропускная способность и емкость канала связи для процесса с нормальным распределением выше, чем для равномерного.
Определим емкость (объем) канала связи
Vk = TkCk = 10602322 = 1,3932 Мбит.
Определим количество информации, которое может быть передано за 10 минут работы канала
10602322=1,3932 Мбит.
Задачи
1. В канал связи передаются сообщения, составленные из алфавита x1, x2 и x3 с вероятностями p(x1)=0,2; p(x2)=0,3 и p(x3)=0,5.
Канальная матрица имеет вид:
при этом
.
Вычислить:
-
Энтропию источника информации H(X) и приемника H(Y).
2. Общую и условную энтропию H (Y/X).
3. Потери информации в канале при передаче к символов (к = 100).
-
Количество принятой информации при передаче к символов.
5. Скорость передачи информации, если время передачи одного символа = 0,01 мс.
2. По каналу связи передаются символы алфавита x1, x2, x3 и x4 с вероятностями . Определить количество информации принятой при передаче 300 символов, если влияние помех описывается канальной матрицей:
.
3. Определить потери информации в канале связи при передаче равновероятных символов алфавита, если канальная матрица имеет вид
.
Определить скорость передачи информации, если время передачи одного символа = 0,001 сек.
4. Определить потери информации при передаче 1000 символов алфавита источника x1, x2 и x3 с вероятностями p =0,2; p
=0,1 и p(
)=0,7, если влияние помех в канале описывается канальной матрицей:
.
5. Определить количество принятой информации при передаче 600 символов, если вероятности появления символов на выходе источника X равны: а влияние помех при передаче описывается канальной матрицей:
.
6. В канал связи передаются сообщения, состоящие из символов алфавита , при этом вероятности появления символов алфавита равны:
Канал связи описан следующей канальной матрицей:
.
Определить скорость передачи информации, если время передачи одного символа мс.
7. По каналу связи передаются сигналы x1, x2 и x3 с вероятностями p =0,2; p
=0,1 и p(
)=0,7. Влияние помех в канале описывается канальной матрицей:
.
Определить общую условную энтропию и долю потерь информации, которая приходится на сигнал x1 (частную условную энтропию).
8. По каналу связи передаются символы алфавита x1, x2, x3 и x4 с вероятностями .
Помехи в канале заданы канальной матрицей
.
Определить пропускную способность канала связи, если время передачи одного символа = 0,01 сек.
Определить количество принятой информации при передаче 500 символов, если вероятности появления символов на входе приемника Y равны: , а влияние помех при передаче описывается канальной матрицей:
.
Список литературы
-
Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. – Харьков: ХПУ, 2000.
-
Куприянов М.С., Матюшкин Б.Д. – Цифровая обработка сигналов: процессоры, алгоритмы, средства проектирования. – СПб: Политехника, 1999.
-
Хемминг Р.В. Цифровые фильтры: Пер. с англ. / Под ред. А.М. Трахтмана. – М.: Сов. радио, 1980.
-
Сиберт У.М. Цепи, сигналы, системы: В 2-х ч. / Пер. с англ. – М.: Мир, 1988.
-
Скляр Б. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. – М.: Издательский дом «Вильямс», 2003. – 1104 с.
-
Kalinin, V.I. Microwave & Telecommunication Technology, 2007. CriMiCo 2007. 17th International Crimean ConferenceVolume, Issue, 10–14 Sept. 2007 Page(s):233 – 234
-
Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра. Пер. с англ. – М.: Радио и связь, 2000.
-
Игнатов В.А. Теория информации и передачи сигналов: Учебник для вузов. – 2-е изд., перераб. и доп. – М.: Радио и связь, 1991;