46873 (665650), страница 2
Текст из файла (страница 2)
Існує ще один варіант CVV - CVV2, який використовується для авторизації телефоном. Він розраховується приблизно за таким самим алгоритмом, як і CVV, а результат друкується на звороті картки. Ці цифри можуть запитувати при виконанні трансакцій по телефону для перевірки легітимності операції.
Для підтримки PIN виконуються такі обчислення:
- Генерується 4-значне число - це PIN;
- PIN комбінується з іншою інформацією, наприклад, з номером рахунку, щоб створити блок даних для процесу шифрування;
- Цей блок тричі шифрується на робочих ключах PIN;
- З отриманого результату обираються деякі цифри. Вони і є Pin Verification Value (Число Перевірки PIN) або Pin Offset (Зміщення PIN);
- Зміщення PIN зберігається;
- Друкується захищений конверт з PIN;
- Пам’ять очищується нулями, щоби приховати усі сліди існування PIN.
На цьому етапі єдине місце, де знаходиться відкрите значення PIN – це конверт, а сам PIN не можна отримати зі зміщення PIN.
Коли картка використовується, власник вводить PIN-код, а зміщення обчислюється та порівнюється з тим, що зберігається у базі даних комп’ютера. Отже і у цьому разі PIN-код не передається мережами у відкритому вигляді.
Ще раз підкреслюємо, що зміщення складається з цифр, які вибрано з шифрованих даних. Зазвичай це 4-6 цифр, знаючи які неможливо відновити власне PIN.
Робота з певним провайдером починається з виклику функції CryptAcquireContext, де користувач визначає тип потрібного криптопровайдера, його назву та назву робочого ключового контейнера. В результаті роботи функція повертає користувачу дескриптор криптопровайдера (handle), за допомогою якого користувач в подальшому буде звертатися до нього та передавати його у процедури для виконання усіх необхідних криптографічних операцій.
Детальний опис контексту роботи з криптопровайдерами та приклади (мовою програмування С) дивіться у книжці Щербакова Л.Ю., Домашева А.В. "Прикладная криптография".
Власне бібліотеки CryptoAPI разом з файлами заголовків та допомоги постачаються у складі бібліотек MSDN.
Відомості про способи аутентифікації.
Однією з основних функцій систем захисту від несанкціонованого доступу є ідентифікація та аутентифікація. Вона полягає в тому, що жоден суб’єкт (сутність обчислювальної системи, здатна ініціювати виконання операцій) не може отримати доступ до об’єктів (сутностей обчислювальної системи, що захищаються) без надання системі захисту певного обсягу інформації про себе.
При цьому ідентифікація суб’єкта полягає в тому, що суб’єкт повідомляє системі захисту свій унікальний ідентифікатор в обчислювальній системі; аутентифікація суб'єкта полягає в тому, що суб’єкт надає системі захисту окрім ідентифікуючої інформації ще й певну інформацію, за допомогою якої система перевіряє, що він дійсно є тим суб’єктом, якого стосується ідентифікуюча інформація; авторизація суб’єкта відбувається після вдалих ідентифікації та аутентифікації і полягає в тому, що обчислювальна система виконує дії, необхідні для того, щоб суб’єкт мав можливість почати роботу.
Таким чином, щоб отримати доступ в обчислювальну систему, користувач має спочатку ідентифікувати себе, а механізми захисту, в свою чергу, мають підтвердити істинність користувача, тобто підтвердити, що він дійсно є тим, кого з себе удає. Існує три групи способів підтвердження істинності користувача. Відповідно, для кожної групи механізми підсистеми ідентифікації та аутентифікації мають перевірити:
-
щось, що користувач знає (паролі, ідентифікаційні коди, інші відомості);
-
щось, що користувач має (ключі, магнітні чи смарт-картки і т.п.);
-
щось, чим користувач є (особисті характеристики користувача: відбитки пальців, малюнок сітківки ока, характеристики голосу, особливості користування клавіатурою та маніпуляторами).
Далі розглядатимуться способи, що належать до першої групи, як найбільш поширені.
Якщо перевіряється істинність тільки користувача, то таку процедуру називають одностороннім (peer-entity) підтвердженням істинності. В іншому випадку, тобто коли користувач має підтвердити свою істинність системі, а система, в свою чергу, має підтвердити свою істинність користувачеві, така процедура носить назву двосторонньої (peer-to-peer) аутентифікації.
В разі використання аутентифікації за простим паролем кожен користувач обчислювальної системи отримує пару значень – ідентифікатор (ім'я в системі) та пароль. Користувач отримує доступ, якщо вказаний ним в процесі входу в систему ідентифікатор є зареєстрованим, а відповідний пароль – вірним.
Така схема вразлива щодо втрати або розголошення пароля, внаслідок чого одні користувачі можуть видавати себе за інших, тим самим здійснюючи несанкціонований доступ.
Іншим способом є аутентифікація на основі списку паролів. При цьому користувачеві разом з ідентифікатором надається список паролів. Перший пароль використовується при першому входів систему, другий – при другому і т. д. Незважаючи на те, що така схема є більш стійкою до втрати окремих паролів, вона має суттєві недоліки, а саме:
-
користувачеві незручно запам'ятовувати список паролів;
-
у випадку помилки або збою при аутентифікації користувач не знає, користуватись йому поточним чи наступним паролем.
Ще одним способом аутентифікації є метод одноразових паролів.
Під час реєстрації користувач генерує певну послідовність, наприклад:
F999(x), …, F(F(F(x))), F(F(x)), F(x), x,
де х – випадкове число.
При цьому в системі в цей час зберігається значення F1000(x), на першому кроці в якості паролю користувач використовує значення F999(x). Отримавши його, система обчислює F(F999(x)) та перевіряє його на відповідність тому F1000(x), що зберігається. В разі відповідності користувач отримує доступ до системи, а в системі в якості поточного зберігається вже значення F999(x). На другому кроці перевіряється F(F998(x)) = F999(x) і так далі. Таким чином, пароль, що вже був використаний, а також всі інші, що знаходяться у списку перед ним, стають недійсними. При цьому у випадку порушення синхронізації користувач має можливість перейти до наступного в списку значення, або навіть "перескочити" через один чи кілька паролів, а система вираховує F(F(…Fn(x)…)) поки не отримає значення, відповідне тому, що зберігається. Перевірити істинність користувача також можна за допомогою методу рукостискання (handshake). При цьому існує процедура f, що відома лише користувачеві та обчислювальній системі. При вході в систему генерується випадкове значення х і обчислюється f(x). Користувач, отримавши х, також обчислює y = f(x) та надсилає його системі. Система порівнює власне значення з отриманим від користувача і робить висновок про його (користувача) істинність. При використанні методу рукостискання ніякої конфіденційної інформації між користувачем і обчислювальною системою не передається взагалі, навіть у шифрованому вигляді. Щодо самої функції f(x), то вона має бути досить складною, щоб зловмисник не міг її вгадати, навіть накопичивши велику кількість пар (x, f(x)). В якості процедури f(x) можна використовувати шифрування x на таємному ключі, який є спільним секретом (або шифрування таємного "магічного рядка" на ключі x). Ключова послідовність генерується системою при так званій ініціалізації ключа. В сеансі ініціалізації ключ записується у файл. Після цього генерований ключ можна використовувати для криптографічних цілей.
Подальша робота з зашифрованим логічним диском звичайна, як зі звичайним логічним диском Windows.
Фізично створений диск являє собою звичайний файл на диску, який виступає логічним диском після монтування його в систему. При монтуванні система питає пароль і, якщо вказано, ключовий файл.
Якщо диск не підмонтований в систему, він виступає як файл. Його можна скопіювати, знищити і т.ін., але прочитати інформацію, яка зберігається в ньому, можна лише знаючи ключ.
Насичення інформаційно-комунікаційних мереж різного роду послугами неможливе без широкого використання без паперових технологій: від оплати різних послуг (комунальні платежі, послуги провайдерів, банківські послуги і т.д.) та надання фінансової звітності (податкові декларації, баланси організацій і т.д.), до організації систем електронної торгівлі, керування рахунками у банках, замовлення білетів, послуг і т.ін. Такі технології вимагають використання безпечних механізмів обміну юридично важливою інформацією. Основою безпечного використання електронного документообігу у відкритих комп‘ютерних мережах є:
- необхідність гарантованого підтвердження особи абонента, що відправив електронний документ;
необхідність гарантованого підтвердження того, що документ обов‘язково буде отримано лише вказаним адресатом;
- необхідність гарантованого підтвердження того, що під час передавання мережами зв‘язку, в документ не внесено ніяких змін.
Ці вимоги можна задовольнити лише за допомогою спеціалізованого програмного забезпечення.
Література
-
Галицкий А.В., Рябко С.Д., Шаньгин В.Ф. Защита информации в сети. – М.:ДМК Пресс, 2004.
-
Щеглов А.Ю. Защита компьютерной информации от несанкционированного доступа. – СПб.:Наука и техника, 2004.
-
Проскурин В.Г., Крутов С.В., Мацкевич И.В. Защита в операционных системах. – М.: "Радио и связь", 2000.
-
Щербаков А, Домашев А. Прикладная криптография. Использование и синтез криптографических интерфейсов. М.:Русская редакция, 2003.
-
М.А.Деднев, Д.В.Дыльнов, М.А.Иванов Защита информации в банковском деле и электронном бизнесе. М.:Кудиц-образ, 2004. – 512 с.















