46166 (665415), страница 2
Текст из файла (страница 2)
typedef struct descriptor
{
word limit; // Предел (размер сегмента в байтах)
word base_lo; // Базовый адрес сегмента (младшее слово)
unsigned char base_hi; // Базовый адрес сегмента (старший байт)
unsigned char type_dpl; // Поле доступа дескриптора
unsigned reserved; // Зарезервированные 16 бит
} descriptor;
Данная структура описана в файле tos.h.
Инициализацию экземпляра такой структуры можно произвести при помощи функции, подобной функции init_gdt_descriptor, описанной в файле tos.c:
void init_gdt_descriptor(descriptor *descr,
unsigned long base,
word limit,
unsigned char type)
{
// Младшее слово базового адреса
descr->base_lo = (word)base;
// Старший байт базового адреса
descr->base_hi = (unsigned char)(base >> 16);
// Поле доступа дескриптора
descr->type_dpl = type;
// Предел
descr->limit = limit;
// Зарезервированное поле, должно быть
// сброшено в 0 всегда (для процессоров 286)
descr->reserved = 0;
}
Например, запись в третий по счёту элемент GDT информации о сегменте данных с сегментным адресом _DS и пределом 0xffff будет выглядеть так:
init_gdt_descriptor(&gdt[2], MK_LIN_ADDR(_DS, 0), 0xffffL,
TYPE_DATA_DESCR | SEG_PRESENT_BIT | SEG_WRITABLE);
Макрос MK_LIN_ADDR определен в файле tos.h и служит для преобразования адреса реального режима формата сегмент:смещение в физический адрес:
#define MK_LIN_ADDR(seg,off) (((unsigned long)(seg))<<4)+(word)(off)
Специальный регистр процессора 286 LDTR имеет длину 16 разрядов и содержит селектор дескриптора, описывающего текущую таблицу LDT.
В данном курсовом проекте я не использую регистр LDTR и не создаю таблицы LDT, в моем варианте достаточно обойтись только одним кольцом защиты (0) процессора и только таблицей GDT.
3.2 Переход в защищенный режим процессора 80286
При переходе в защищенный режим программа совершает следующие операции:
Подготовка в оперативной памяти глобальной таблицы дескрипторов GDT. В этой таблице создаются дескрипторы для всех сегментов, которые будут нужны программе сразу после того, как она переключится в защищённый режим.
Для обеспечения возможности возврата из защищённого режима в реальный записывает адрес возврата в реальный режим в область данных BIOS по адресу 0040h:0067h, а также пишет в CMOS-память в ячейку 0Fh код 5. Этот код обеспечит после выполнения сброса процессора передачу управления по адресу, подготовленному нами в области данных BIOS по адресу 0040h:0067h.
Запрещает все маскируемые и немаскируемые прерывания.
Открывает адресную линию A20 (попробуем оперировать блоками памяти выше 1 Мб).
Запоминает в оперативной памяти содержимое сегментных регистров, которые необходимо сохранить для возврата в реальный режим, в частности, указатель стека реального режима.
Программирует контроллер прерываний для работы в защищенном режиме.
Загружает регистры IDTR и GDTR.
Необходимые функции для этого реализованы в файлах tos.c и TOSSYST.ASM:
Подготовка GDT осуществляется при помощи описанных выше функции init_gdt_descriptor() и макроса MK_LIN_ADDR().
Остальные действия, необходимые для перехода в защищенный режим, описаны в функции protected_mode() модуля TOSSYST.ASM:
Обеспечение возможности возврата в реальный режим:
push ds ; готовим адрес возврата
mov ax,40h ; из защищённого режима
mov ds,ax
mov [WORD 67h],OFFSET shutdown_return
mov [WORD 69h],cs
pop ds
Запрет прерываний:
сli
in al, INT_MASK_PORT
and al, 0ffh
out INT_MASK_PORT, al
mov al,8f
out CMOS_PORT,al
Открытие линии A20 производится вызовом функции enable_a20(), описанной в файле TOSSYST.ASM:
PROC enable_a20 NEAR
mov al,A20_PORT
out STATUS_PORT,al
mov al,A20_ON
out KBD_PORT_A,al
ret
ENDP enable_a20
Запоминаем содержимое сегментных регистров SS и ES:
mov [real_ss],ss
mov [real_es],es
Программируем при помощи функции set_int_ctrlr(), описанной в файле TOSSYST.ASM каскад контроллеров прерываний (Master и Slave) для работы в защищенном режиме (описание работы прерываний в защищенном режиме приведено ниже):
mov dx,MASTER8259A
mov ah,20
call set_int_ctrlr
mov dx,SLAVE8259A
mov ah,28
call set_int_ctrlr
Загружаем регистры IDTR и GDTR:
lidt [FWORD idtr]
lgdt [QWORD gdt_ptr]
И, напоследок, переключаем процессор в защищенный режим:
mov ax, 0001h
lmsw ax
3.3 Возврат в реальный режим процессора.
Для того, чтобы вернуть процессор 80286 из защищённого режима в реальный, необходимо выполнить аппаратный сброс (отключение) процессора. Это реализуется в функции real_mode(), описанной в файле TOSSYST.ASM:
PROC _real_mode NEAR
; Сброс процессора
cli
mov [real_sp], sp
mov al, SHUT_DOWN
out STATUS_PORT, al
rmode_wait:
hlt
jmp rmode_wait
LABEL shutdown_return FAR
; Вернулись в реальный режим
mov ax, DGROUP
mov ds, ax
assume ds:DGROUP
mov ss,[real_ss]
mov sp,[real_sp]
; Размаскируем все прерывания
in al, INT_MASK_PORT
and al, 0
out INT_MASK_PORT, al
call disable_a20
mov ax, DGROUP
mov ds, ax
mov ss, ax
mov es, ax
mov ax,000dh
out CMOS_PORT,al
sti
ret
ENDP _real_mode
Функция disable_a20(), описанная в файле TOSSYST.ASM закрывает адресную линию A20:
PROC disable_a20 NEAR
push ax
mov al, A20_PORT
out STATUS_PORT, al
mov al ,A20_OFF
out KBD_PORT_A, al
pop ax
ret
ENDP disable_a20
3.4 Обработка прерываний в защищенном режиме.
Обработка прерываний и исключений в защищённом режиме по аналогии с реальным режимом базируется на таблице прерываний. Но таблица прерываний защищённого режима является таблицей дескрипторов, которая содержит так называемые вентили прерываний, вентили исключений и вентили задач.
Таблица прерываний защищённого режима называется дескрипторной таблицей прерываний IDT (Interrupt Descriptor Table). Также как и таблицы GDT и LDT, таблица IDT содержит 8-байтовые дескрипторы. Причём это системные дескрипторы - вентили прерываний, исключений и задач. Поле TYPE вентиля прерывания содержит значение 6, а вентиля исключения - значение 7.
Формат элементов дескрипторной таблицы прерываний IDT показан на рис. 3.
Рис. 3. Формат элементов дескрипторной таблицы прерываний IDT.
Расположение определяется содержимым 5-байтового внутреннего регистра процессора IDTR. Формат регистра IDTR полностью аналогичен формату регистра GDTR, для его загрузки используется команда LIDT. Так же, как регистр GDTR содержит 24-битовый физический адрес таблицы GDT и её предел, так и регистр IDTR содержит 24-битовый физический адрес дескрипторной таблицы прерываний IDT и её предел.
Регистр IDTR программа загружает перед переходом в защищённый режим, в функции protected_mode() модуля TOSSYST.ASM при помощи вызова функции set_int_ctrlr(), описанной в файле TOSSYST.ASM.
Для обработки особых ситуаций - исключений - разработчики процессора i80286 зарезервировали 31 номер прерывания. Каждому исключению соответствует одна из функций exception_XX() из модуля EXCEPT.C. Собственно, описав реакцию программы на каждое исключение можно обрабатывать любые ошибки защищенного режима. В моем случае достаточно завершать программу при возникновении любого исключения с выдачей на экран номера возникшего исключения. Поэтому функции exception_XX() просто вызывают prg_abort(), описанной там же, и передают ей номер возникшего исключения. Функция prg_abort() переключает процессор в реальный режим, выводит сообщение с данными возникшего исключения и завершает работу программы.
Теперь разберемся с аппаратными прерываниями, которые нас не интересуют в данной программе, однако это не мешает им происходить. Для этого в модуле INTPROC.C описаны две функции заглушки iret0() и iret1(), которые собственно ничего не делают кроме того, что выдают на контроллеры команды конца прерывания. Функция iret0() относится к первому контроллеру (Master), а вторая – ко второму (Slave).
Неплохо было бы включить в программу поддержку программного прерывания 30h, чтобы можно было получать данные с клавиатуры. Это реализовано в модуле KEYBOARD.ASM, в функции Int_30h_Entry(). В IDT помещается вентиль программного прерывания, который вызывает данную функцию в момент прерывания 30h.
После запуска программа переходит в защищённый режим и размаскирует прерывания от таймера и клавиатуры. Далее она вызывает в цикле прерывание int 30h (ввод символа с клавиатуры), и выводит на экран скан-код нажатой клавиши и состояние переключающих клавиш (таких, как CapsLock, Ins, и т.д.). Если окажется нажатой клавиша ESC, программа выходит из цикла.
Обработчик аппаратного прерывания клавиатуры - процедура с именем Keyb_int из модуля KEYBOARD.ASM. После прихода прерывания она выдаёт короткий звуковой сигнал (функция beep() из модуля TOSSYST.ASM), считывает и анализирует скан-код клавиши, вызвавшей прерывание. Скан-коды классифицируются на обычные и расширенные (для 101-клавишной клавиатуры). В отличие от прерывания BIOS INT 16h, мы для простоты не стали реализовывать очередь, а ограничились записью полученного скан-кода в глобальную ячейку памяти key_code. Причём прерывания, возникающие при отпускании клавиш, игнорируются.
Запись скан-кода в ячейку key_code выполняет процедура Keyb_PutQ() из модуля KEYBOARD.ASM. После записи эта процедура устанавливает признак того, что была нажата клавиша - записывает значение 0FFh в глобальную переменную key_flag.
Программное прерывание int 30h опрашивает состояние key_flag. Если этот флаг оказывается установленным, он сбрасывается, вслед за чем обработчик int 30h записывает в регистр AX скан-код нажатой клавиши, в регистр BX - состояние переключающих клавиш на момент нажатия клавиши, код которой передан в регистре AX.
Ну и последнее, требующееся прерывание – это аппаратное прерывание таймера. Обработка этого прерывания реализована в функции Timer_int() модуля TIMER.C. Эта функция служит для переключения процессора между задачами. Более подробно я рассмотрю ее работу в следующей главе курсового проекта.
Структура элемента дескрипторной таблицы прерываний IDT описана в файле tos.inc:
STRUC idtr_struc
idt_len dw 0
idt_low dw 0
idt_hi db 0
rsrv db 0
ENDS idtr_struc
3.5 Реализация мультизадачности.
Я пошел в данном курсовом проекте самым простым способом – реализации мультизадачности через аппаратный таймер компьютера. Реализация более сложных алгоритмов явно тянет на дипломный проект.
Как известно, таймер вырабатывает прерывание IRQ0 примерно 18,2 раза в секунду. Можно использовать данный факт для переключения между задачами, выделяя каждой квант времени. Я не буду здесь реализовывать механизм приоритетов задач. Все выполняемые задачи имеют равный приоритет.
Для реализации разделения ресурсов компьютера между задачами и их взаимодействию друг с другом и средой исполнения (можно даже ее назвать операционной системой), я реализовал механизм семафоров.
В моем случае семафор представляет собой ячейку памяти, отражающая текущее состояние ресурса - свободен или занят.
Я иду еще на одно упрощение - не создаю здесь таблицы LDT для каждой задачи. Все-таки это не настоящая ОС, а ее так скажем, модель.
Настоящие многозадачные ОС квантуют время не на уровне программы, а на уровне задачи, так как каждая программа может иметь несколько параллельно выполняющихся потоков. Я не буду здесь организовывать механизм потоков. Это, я думаю, простительно, так как он не реализован полностью даже в Linux. Буду исходить из предпосылки, что одна программа равна одной задаче.
3.5.1 Контекст задачи.
Для хранения контекста неактивной в настоящей момент задачи процессор i80286 использует специальную область памяти, называемую сегментом состояния задачи TSS (Task State Segment). Формат TSS представлен на рис. 4.
Рис. 4. Формат сегмента состояния задачи TSS.
Сегмент TSS адресуется процессором при помощи 16-битного регистра TR (Task Register), содержащего селектор дескриптора TSS, находящегося в глобальной таблице дескрипторов GDT (рис. 5).
Рис. 5. Дескриптор сегмента состояния задачи TSS.
Многозадачная операционная система для каждой задачи должна создавать свой TSS. Перед тем как переключиться на выполнение новой задачи, процессор сохраняет контекст старой задачи в её сегменте TSS.
Сегмент состояния задачи описан в файле tos.h:
typedef struct tss
{
word link; // поле обратной связи
word sp0; // указатель стека кольца 0
word ss0;
word sp1; // указатель стека кольца 1
word ss1;
word sp2; // указатель стека кольца 1
word ss2;
word ip; // регистры процессора
word flags;
word ax;
word cx;
word dx;
word bx;
word sp;
word bp;
word si;
word di;
word es;
word cs;
word ss;
word ds;
word ldtr;
} tss;
3.5.2 Переключение задач.
В качестве способа переключения между задачами выберем команду JMP. Неудобство в этом случае представляет то, что если, к примеру, задача 1 вызвала задачу 2, то вернуться к задаче 2 можно только вызвав снова команду JMP и передав ей TSS задачи 1.
Реализация альтернативного метода через команду CALL позволяет создавать механизм вложенных вызовов задач, но выглядит гораздо более трудоемким и требует организации вентилей вызова задач.
Функция переключения задач называется jump_to_task() и реализована в модуле TOSSYST.ASM:
PROC _jump_to_task NEAR
push bp
mov bp,sp
mov ax,[bp+4] ; получаем селектор
; новой задачи
mov [new_select],ax ; запоминаем его
jmp [DWORD new_task] ; переключаемся на
; новую задачу
pop bp
ret
ENDP _jump_to_task
Переключение задач происходит в функции Timer_int() из модуля TIMER.C. Эта функция вызывается по прерыванию таймера. Выбор какая задача получит процессор в данный момент решает диспетчер задач, организованный как функция dispatcher(), описанная в модуле TIMER.C. Диспетчер работает по самому простому алгоритму – по кругу переключает процессор между задачами.
3.5.3 Разделение ресурсов.
Разделение ресурсов для задач организовано в файле SEMAPHOR.C. Сам семафор представляет собой целое 2-х байтное число (int). В принципе можно было обойтись и одним битом, но это требует несколько более сложного кода.
Так как операционная система у меня получается ну очень крошечная, я думаю будет достаточно предположить, что максимальное количество семафоров в системе будет равно 5. Поэтому в файле SEMAPHOR.C задан статический массив из 5 семафоров:
word semaphore[5];
Работа задач с семафорами организуется при помощи 3-х функций:
sem_clear() – процедура сброса семафора,
sem_set() – процедура установки семафора,
sem_wait() – процедура ожидания семафора.
3.5.4 Задачи.
Исполняющиеся задачи организованы как просто функции, в модуле TASKS.C.
Задача task1() выполняется единократно, после чего передает управление операционной системе.
Задачи task2() и flipflop_task() работают в бесконечных циклах, рисуя на экране двигающиеся линии, тем самым обозначая свою работу. Задача flipflop_task() работает с меньшим периодом и только тогда, когда установлен семафор 1.
Задача keyb_task() вводит символы с клавиатуры и отображает скан-коды нажатых клавиш, а также состояние переключающих клавиш на экране. Если нажимается клавиша ESC, задача устанавливает семафор номер 0. Работающая параллельно главная задача ожидает установку этого семафора. Как только семафор 0 окажется установлен, главная задача завершает свою работу и программа возвращает процессор в реальный режим, затем передаёт управление MS-DOS.
4. Полные исходные тексты программы.
4.1 Файл TOS.INC. Определение констант и структур для модулей, составленных на языке ассемблера.
CMOS_PORT equ 70h
PORT_6845 equ 63h
COLOR_PORT equ 3d4h
MONO_PORT equ 3b4h
STATUS_PORT equ 64h
SHUT_DOWN equ 0feh
INT_MASK_PORT equ 21h
VIRTUAL_MODE equ 0001
A20_PORT equ 0d1h
A20_ON equ 0dfh
A20_OFF equ 0ddh
EOI equ 20h
MASTER8259A equ 20h
SLAVE8259A equ 0a0h
KBD_PORT_A equ 60h
KBD_PORT_B equ 61h
L_SHIFT equ 0000000000000001b
NL_SHIFT equ 1111111111111110b
R_SHIFT equ 0000000000000010b
NR_SHIFT equ 1111111111111101b
L_CTRL equ 0000000000000100b
NL_CTRL equ 1111111111111011b
R_CTRL equ 0000000000001000b
NR_CTRL equ 1111111111110111b
L_ALT equ 0000000000010000b
NL_ALT equ 1111111111101111b
R_ALT equ 0000000000100000b
NR_ALT equ 1111111111011111b
CAPS_LOCK equ 0000000001000000b
SCR_LOCK equ 0000000010000000b
NUM_LOCK equ 0000000100000000b
INSERT equ 0000001000000000b
STRUC idtr_struc
idt_len dw 0
idt_low dw 0
idt_hi db 0
rsrv db 0
ENDS idtr_struc
4.2 Файл TOS.H. Определение констант и структур для модулей, составленных на языке Си.
#define word unsigned int
// Селекторы, определённые в GDT
#define CODE_SELECTOR 0x08 // сегмент кода
#define DATA_SELECTOR 0x10 // сегмент данных
#define TASK_1_SELECTOR 0x18 // задача TASK_1
#define TASK_2_SELECTOR 0x20 // задача TASK_2
#define MAIN_TASK_SELECTOR 0x28 // главная задача
#define VID_MEM_SELECTOR 0x30 // сегмент видеопамяти
#define IDT_SELECTOR 0x38 // талица IDT
#define KEYBIN_TASK_SELECTOR 0x40 // задача ввода с клавиатуры
#define KEYB_TASK_SELECTOR 0x48 // задача обработки
// клавиатурного прерывания
#define FLIP_TASK_SELECTOR 0x50 // задача FLIP_TASK
// Байт доступа
typedef struct
{
unsigned accessed : 1;
unsigned read_write : 1;
unsigned conf_exp : 1;
unsigned code : 1;
unsigned xsystem : 1;
unsigned dpl : 2;
unsigned present : 1;
} ACCESS;
// Структура дескриптора
typedef struct descriptor
{
word limit; // Предел (размер сегмента в байтах)
word base_lo; // Базовый адрес сегмента (младшее слово)
unsigned char base_hi; // Базовый адрес сегмента (старший байт)
unsigned char type_dpl; // Поле доступа дескриптора
unsigned reserved; // Зарезервированные 16 бит
} descriptor;
// Структура вентиля вызова, задачи, прерывания,
// исключения
typedef struct gate
{
word offset;
word selector;
unsigned char count;
unsigned char type_dpl;
word reserved;
} gate;
// Структура сегмента состояния задачи TSS
typedef struct tss
{
word link; // поле обратной связи
word sp0; // указатель стека кольца 0
word ss0;
word sp1; // указатель стека кольца 1
word ss1;
word sp2; // указатель стека кольца 1
word ss2;
word ip; // регистры процессора
word flags;
word ax;
word cx;
word dx;
word bx;
word sp;
word bp;
word si;
word di;
word es;
word cs;
word ss;
word ds;
word ldtr;
} tss;
// Размеры сегментов и структур
#define TSS_SIZE (sizeof(tss))
#define DESCRIPTOR_SIZE (sizeof(descriptor))
#define GATE_SIZE (sizeof(gate))
#define IDT_SIZE (sizeof(idt))
// Физические адреса видеопамяти для цветного
// и монохромного видеоадаптеров
#define COLOR_VID_MEM 0xb8000L
#define MONO_VID_MEM 0xb0000L
// Видеоржеимы
#define MONO_MODE 0x07 // монохромный
#define BW_80_MODE 0x02 // монохромный, 80 символов
#define COLOR_80_MODE 0x03 // цветной, 80 символов
// Значения для поля доступа
#define TYPE_CODE_DESCR 0x18
#define TYPE_DATA_DESCR 0x10
#define TYPE_TSS_DESCR 0x01
#define TYPE_CALL_GATE 0x04
#define TYPE_TASK_GATE 0x85
#define TYPE_INTERRUPT_GATE 0x86
#define TYPE_TRAP_GATE 0x87
#define SEG_WRITABLE 0x02
#define SEG_READABLE 0x02
#define SEG_PRESENT_BIT 0x80
// Константы для обработки аппаратных
// прерываний
#define EOI 0x20
#define MASTER8259A 0x20
#define SLAVE8259A 0xa0
// Макро для формирования физического
// адреса из компонент сегменоного адреса
// и смещения
#define MK_LIN_ADDR(seg,off) (((unsigned long)(seg))<<4)+(word)(off)
// Тип указателя на функцию типа void без параметров
typedef void (func_ptr)(void);
4.3 Файл TOS.H. Основной файл программы.
#include
#include
#include
#include
#include "tos.h"
// --------------------------------
// Определения вызываемых функций
// --------------------------------
// Инициализация защищенного режима и вход в него
void Init_And_Protected_Mode_Entry(void);
void protected_mode(unsigned long gdt_ptr, unsigned int gdt_size,
word cseg, word dseg);
word load_task_register(word tss_selector);
void real_mode(void);
void jump_to_task(word tss_selector);
void load_idtr(unsigned long idt_ptr, word idt_size);
void Keyb_int(void);
void Timer_int(void);
void Int_30h_Entry(void);
extern word kb_getch(void);
void enable_interrupt(void);
void task1(void);
void task2(void);
void flipflop_task(void);
void keyb_task(void);
void init_tss(tss *t, word cs, word ds,
unsigned char *sp, func_ptr ip);
void init_gdt_descriptor(descriptor *descr, unsigned long base,
word limit, unsigned char type);
void exception_0(void); //{ prg_abort(0); }
void exception_1(void); //{ prg_abort(1); }
void exception_2(void); //{ prg_abort(2); }
void exception_3(void); //{ prg_abort(3); }
void exception_4(void); //{ prg_abort(4); }
void exception_5(void); //{ prg_abort(5); }
void exception_6(void); //{ prg_abort(6); }
void exception_7(void); //{ prg_abort(7); }
void exception_8(void); //{ prg_abort(8); }
void exception_9(void); //{ prg_abort(9); }
void exception_A(void); //{ prg_abort(0xA); }
void exception_B(void); //{ prg_abort(0xB); }
void exception_C(void); //{ prg_abort(0xC); }
void exception_D(void); //{ prg_abort(0xD); }
void exception_E(void); //{ prg_abort(0xE); }
void exception_F(void); //{ prg_abort(0xF); }
void exception_10(void); //{ prg_abort(0x10); }
void exception_11(void); //{ prg_abort(0x11); }
void exception_12(void); //{ prg_abort(0x12); }
void exception_13(void); //{ prg_abort(0x13); }
void exception_14(void); //{ prg_abort(0x14); }
void exception_15(void); //{ prg_abort(0x15); }
void exception_16(void); //{ prg_abort(0x16); }
void exception_17(void); //{ prg_abort(0x17); }
void exception_18(void); //{ prg_abort(0x18); }
void exception_19(void); //{ prg_abort(0x19); }
void exception_1A(void); //{ prg_abort(0x1A); }
void exception_1B(void); //{ prg_abort(0x1B); }
void exception_1C(void); //{ prg_abort(0x1C); }
void exception_1D(void); //{ prg_abort(0x1D); }
void exception_1E(void); //{ prg_abort(0x1E); }
void exception_1F(void); //{ prg_abort(0x1F); }
void iret0(void);
void iret1(void);
// --------------------------------------
// Глобальная таблица дескрипторов GDT
// --------------------------------------
descriptor gdt[11];
// --------------------------------------
// Дескрипторная таблица прерываний IDT
// --------------------------------------
gate idt[] =
{
// Обработчики исключений
{ (word)&exception_0, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 0
{ (word)&exception_1, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 1
{ (word)&exception_2, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 2
{ (word)&exception_3, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 3
{ (word)&exception_4, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 4
{ (word)&exception_5, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 5
{ (word)&exception_6, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 6
{ (word)&exception_7, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 7
{ (word)&exception_8, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 8
{ (word)&exception_9, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 9
{ (word)&exception_A, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // A
{ (word)&exception_B, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // B
{ (word)&exception_C, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // C
{ (word)&exception_D, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // D
{ (word)&exception_E, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // E
{ (word)&exception_F, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // F
{ (word)&exception_10, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 10
{ (word)&exception_11, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 11
{ (word)&exception_12, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 12
{ (word)&exception_13, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 13
{ (word)&exception_14, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 14
{ (word)&exception_15, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 15
{ (word)&exception_16, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 16
{ (word)&exception_17, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 17
{ (word)&exception_18, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 18
{ (word)&exception_19, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 19
{ (word)&exception_1A, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 1A
{ (word)&exception_1B, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 1B
{ (word)&exception_1C, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 1C
{ (word)&exception_1D, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 1D
{ (word)&exception_1E, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 1E
{ (word)&exception_1F, CODE_SELECTOR, 0, TYPE_TRAP_GATE, 0 }, // 1F
// Обработчик прерываний таймера
{ (word)&Timer_int, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 20
// { (word)&Keyb_int, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 21
// Вентиль задачи, запускающейся по прерыванию от клавиатуры
{ 0, KEYB_TASK_SELECTOR, 0, TYPE_TASK_GATE, 0 }, // 21
// Заглушки для остальных аппаратных прерываний
{ (word)&iret0, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 22
{ (word)&iret0, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 23
{ (word)&iret0, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 24
{ (word)&iret0, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 25
{ (word)&iret0, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 26
{ (word)&iret0, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 27
{ (word)&iret1, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 28
{ (word)&iret1, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 29
{ (word)&iret1, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 2A
{ (word)&iret1, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 2B
{ (word)&iret1, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 2C
{ (word)&iret1, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 2D
{ (word)&iret1, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 2E
{ (word)&iret1, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 2F
// Обработчик для программного прерывания, которое
// используется для ввода с клавиатуры
{ (word)&Int_30h_Entry, CODE_SELECTOR, 0, TYPE_INTERRUPT_GATE, 0 }, // 30
// Вентиль задачи FLIP_TASK
{ 0, FLIP_TASK_SELECTOR, 0, TYPE_TASK_GATE, 0 } // 31
};
// -------------------------------------------
// Сегменты TSS для различных задач
// -------------------------------------------
tss main_tss; // TSS главной задачи
tss task_1_tss; // TSS задачи TASK_1
tss task_2_tss; // TSS задачи TASK_2
tss keyb_task_tss; // TSS задач обслуживания
tss keyb_tss; // клавиатуры
tss flipflop_tss; // TSS задачи FLIP_TASK
// -------------------------------------------
// Стеки для задач
// -------------------------------------------
unsigned char task_1_stack[1024];
unsigned char task_2_stack[1024];
unsigned char keyb_task_stack[1024];
unsigned char keyb_stack[1024];
unsigned char flipflop_stack[1024];
word y=0; // номер текущей строки для вывода на экран
// -------------------------------------------
// Начало программы
// -------------------------------------------
extern int getcpu(void);
void main(void)
{
// Очищаем экран
textcolor(BLACK);
textbackground(LIGHTGRAY);
clrscr();
// Входим в защищённый режим процессора
Init_And_Protected_Mode_Entry();
// Выводим сообщение
vi_hello_msg();
y=3;
vi_print(0, y++, " Установлен защищённый режим в главной задаче", 0x7f);
// Загружаем регистр TR селектором главной задачи
// т.е. задачи main()
load_task_register(MAIN_TASK_SELECTOR);
// Переключаемся на задачу TASK_1
jump_to_task(TASK_1_SELECTOR);
// После возврата в главную задачу выдаём сообщение
vi_print(0, y++ ," Вернулись в главную задачу", 0x7f);
// Запускаем планировщик задач
vi_print(0, y++ ," Запущен планировщик задач", 0x70);
enable_interrupt(); // разрешаем прерывание таймера
// Ожидаем установки семафора с номером 0. После того,
// как этот семафор окажется установлен, возвращаемся
// в реальный режим.
// Семафор 0 устанавливается задачей, обрабатывающей ввод с
// клавиатуры, которая работает независимо от
// главной задаче.
vi_print(18, 24," Для возврата в реальный режим нажмите ESC", 0x70);
sem_clear(0); // сброс семафора 0
sem_wait(0); // ожидание установки семафора 0
// Возврат в реальный режим, стирание экрана и
// передача управления MS-DOS
real_mode();
textcolor(WHITE);
textbackground(BLACK);
clrscr();
}
// -----------------------------------
// Функция инициализации сегмента TSS
// -----------------------------------
void init_tss(tss *t, word cs, word ds,
unsigned char *sp, func_ptr ip)
{
t->cs = cs; // селектор сегмента кода
t->ds = ds; // поля ds, es, ss устанавливаем
t->es = ds; // на сегмент данных
t->ss = ds;
t->ip = (word)ip; // указатель команд
t->sp = (word)sp; // смещение стека
t->bp = (word)sp;
}
// -------------------------------------------------
// Функция инициализации дескриптора в таблице GDT
// -------------------------------------------------
void init_gdt_descriptor(descriptor *descr,
unsigned long base,
word limit,
unsigned char type)
{
// Младшее слово базового адреса
descr->base_lo = (word)base;
// Старший байт базового адреса
descr->base_hi = (unsigned char)(base >> 16);
// Поле доступа дескриптора
descr->type_dpl = type;
// Предел
descr->limit = limit;
// Зарезервированное поле, должно быть
// сброшено в 0 всегда (для процессоров 286)
descr->reserved = 0;
}
// -----------------------------------------------
// Инициализация всех таблиц и вход
// в защищённый режим
// -----------------------------------------------
void Init_And_Protected_Mode_Entry(void)
{
union REGS r;
// Инициализируем таблицу GDT, элементы с 1 по 5
init_gdt_descriptor(&gdt[1], MK_LIN_ADDR(_CS, 0),
0xffffL, TYPE_CODE_DESCR | SEG_PRESENT_BIT | SEG_READABLE);
init_gdt_descriptor(&gdt[2], MK_LIN_ADDR(_DS, 0),
0xffffL, TYPE_DATA_DESCR | SEG_PRESENT_BIT | SEG_WRITABLE);
init_gdt_descriptor(&gdt[3],
MK_LIN_ADDR(_DS, &task_1_tss),
(unsigned long)TSS_SIZE-1, TYPE_TSS_DESCR | SEG_PRESENT_BIT);
init_gdt_descriptor(&gdt[4],
MK_LIN_ADDR(_DS, &task_2_tss),
(unsigned long)TSS_SIZE-1, TYPE_TSS_DESCR | SEG_PRESENT_BIT);
init_gdt_descriptor(&gdt[5],
MK_LIN_ADDR(_DS, &main_tss),
(unsigned long)TSS_SIZE-1, TYPE_TSS_DESCR | SEG_PRESENT_BIT);
// Инициализируем TSS для задач TASK_1, TASK_2
init_tss(&task_1_tss, CODE_SELECTOR, DATA_SELECTOR, task_1_stack+
sizeof(task_1_stack), task1);
init_tss(&task_2_tss, CODE_SELECTOR, DATA_SELECTOR, task_2_stack+
sizeof(task_2_stack), task2);
// Инициализируем элемент 6 таблицы GDT -
// дескриптор для сегмента видеопамяти
// Определяем видеорежим
r.h.ah = 15;
int86(0x10, &r, &r);
// Инициализация для монохромного режима
if (r.h.al == MONO_MODE)
init_gdt_descriptor(&gdt[6], MONO_VID_MEM,
3999, TYPE_DATA_DESCR | SEG_PRESENT_BIT | SEG_WRITABLE);
// Инициализация для цветного режима
else if (r.h.al == BW_80_MODE || r.h.al == COLOR_80_MODE)
init_gdt_descriptor(&gdt[6], COLOR_VID_MEM,
3999, TYPE_DATA_DESCR | SEG_PRESENT_BIT | SEG_WRITABLE);
else
{
printf("\nИзвините, этот видеорежим недопустим.");
exit(-1);
}
// Инициализация элементов 7 и 8 таблицы GDT
init_gdt_descriptor(&gdt[7],
MK_LIN_ADDR(_DS, &idt),
(unsigned long)IDT_SIZE-1,
TYPE_DATA_DESCR | SEG_PRESENT_BIT | SEG_WRITABLE);
init_gdt_descriptor(&gdt[8],
MK_LIN_ADDR(_DS, &keyb_task_tss),
(unsigned long)TSS_SIZE-1,
TYPE_TSS_DESCR | SEG_PRESENT_BIT);
// Инициализация TSS для задачи KEYB_TASK
init_tss(&keyb_task_tss, CODE_SELECTOR, DATA_SELECTOR,
keyb_task_stack + sizeof(keyb_task_stack), keyb_task);
// Инициализация элемента 9 таблицы GDT
init_gdt_descriptor(&gdt[9],
MK_LIN_ADDR(_DS, &keyb_tss),
(unsigned long)TSS_SIZE-1,
TYPE_TSS_DESCR | SEG_PRESENT_BIT);
// Инициализация TSS для задачи KEYB обработки ввода с клавиатуры
init_tss(&keyb_tss, CODE_SELECTOR, DATA_SELECTOR,
keyb_stack + sizeof(keyb_stack), Keyb_int);
// Инициализация элемента 10 таблицы GDT
init_gdt_descriptor(&gdt[10],
MK_LIN_ADDR(_DS, &flipflop_tss),
(unsigned long)TSS_SIZE-1,
TYPE_TSS_DESCR | SEG_PRESENT_BIT);
// Инициализация TSS для задачи FLIP_TASK
init_tss(&flipflop_tss, CODE_SELECTOR, DATA_SELECTOR,
flipflop_stack + sizeof(flipflop_stack), flipflop_task);
// Загрузка регистра IDTR
load_idtr(MK_LIN_ADDR(_DS, &idt), IDT_SIZE);
// Вход в защищённый режим
protected_mode(MK_LIN_ADDR(_DS, &gdt), sizeof(gdt),
CODE_SELECTOR, DATA_SELECTOR);
}
4.4 Файл TASKS.C. Содержит функции задач.
#include
#include
#include
#include
#include
#include "tos.h"
#include "screen.h"
word dispatcher(void);
// Номер текущей строки для вывода на экран
extern unsigned int y;
// Задача TASK_1
void task1(void)
{
while(1)
{
vi_print(0,y++, " Запущена задача TASK_1, "
" возврат управления главной задаче", 0x70);
jump_to_task(MAIN_TASK_SELECTOR);
// После повторного запуска этой задачи
// снова входим в цикл.
}
}
// Задача TASK_2
long delay_cnt1 = 0l;
word flipflop1 = 0;
void task2(void)
{
char Buf[B_SIZE + 1]; // Буфер вывода задачи 2
static TLabel Label1;
static TLabel Label2;
memset(Buf, ' ', B_SIZE);
Buf[B_SIZE] = 0;
Label1.Pos = 0;
Label1.Dir = 1;
Buf[Label1.Pos] = '/';
Label2.Pos = B_SIZE;
Label2.Dir = 0;
Buf[Label2.Pos] = '\\';
vi_print(30, 15, "Работает задача 2:", 0x7f);
while (1)
{
// Периодически выводим на экран движки,
// каждый раз переключая
// семафор номер 1. Этот семафор однозначно
// соответствует выведенной на экран строке.
asm sti
if (delay_cnt1 > 150000l)
{
asm cli
StepLabel(&Label1, &Label2, Buf);
if (flipflop1)
{
vi_print(5, 16, Buf, 0x1f);
sem_clear(1);
}
else
{
vi_print(5, 16, Buf, 0x1f);
sem_set(1);
}
flipflop1 ^= 1;
delay_cnt1 = 0l;
asm sti
}
delay_cnt1++;
}
}
word flipflop = 0;
long delay_cnt = 0l;
// Эта задача также периодически выводит на экран
// с меньшим периодом. Кроме того, эта задача
// работает только тогда, когда установлен
// семафор номер 1.
void flipflop_task(void)
{
char Buf[B_SIZE + 1]; // Буфер вывода задачи 2
static TLabel Label1;
static TLabel Label2;
memset(Buf, ' ', B_SIZE);
Buf[B_SIZE] = 0;
Label1.Pos = 0;
Label1.Dir = 1;
Buf[Label1.Pos] = '/';
Label2.Pos = B_SIZE;
Label2.Dir = 0;
Buf[Label2.Pos] = '\\';
vi_print(30, 12, "Работает задача 0:", 0x7f);
while(1)
{
asm sti
if (delay_cnt > 20000l )
{
sem_wait(1); // ожидаем установки семафора
asm cli
StepLabel(&Label1, &Label2, Buf);
vi_print(5, 13, Buf, 0x1f);
flipflop ^= 1;
delay_cnt = 0l;
asm sti
}
delay_cnt++;
}
}
word keyb_code;
extern word keyb_status;
// Эта задача вводит символы с клавиатуры
// и отображает скан-коды нажатых клавиш
// и состояние переключающих клавиш на экране.
// Если нажимается клавиша ESC, задача
// устанавливает семафор номер 0.
// Работающая параллельно главная задача
// ожидает установку этого семафора. Как только
// семафор 0 окажется установлен, главная задача
// завершает свою работу и программа возвращает
// процессор в реальный режим, затем передаёт
// управление MS-DOS.
void keyb_task(void)
{
vi_print(32, 20, " Key code: .... ", 0x20);
vi_print(32, 21, " Key status: .... ", 0x20);
while(1)
{
keyb_code = kb_getch();
vi_put_word(45, 20, keyb_code, 0x4f);
vi_put_word(45, 21, keyb_status, 0x4f);
if ((keyb_code & 0x00ff) == 1)
sem_set(0);
}
}
4.5 Файл SEMAPHOR.C. Содержит процедуры для работы с семафорами.
#include
#include
#include
#include
#include "tos.h"
// Массив из пяти семафоров
word semaphore[5];
// Процедура сброса семафора.
// Параметр sem - номер сбрасываемого семафора
void sem_clear(int sem)
{
asm cli
semaphore[sem] = 0;
asm sti
}
// Процедура установки семафора
// Параметр sem - номер устанавливаемого семафора
void sem_set(int sem)
{
asm cli
semaphore[sem] = 1;
asm sti
}
// Ожидание установки семафора
// Параметр sem - номер ожидаемого семафора
4>4>














