LECT_ALL2 (663703), страница 2
Текст из файла (страница 2)
ос= k(w) опт - коэффициент ослабления излучения оптической системы, равный произведению коэффициента виньетирования k(w) и коэффициента пропускания оптики опт
ср - пропускание слоя среды между объектом и оптической системой
Учитывая, что d = Sопт cos w/(H2/cos2 )=D2опт cos w cos2 /(4 H2), получаем
dФ = D2опт L cos w cos3 k(w) оссрdS/(4H2) (***)
Величина освещенности в плоскости первичного изображения определяется следующим образом : Eиз = dФ/dS=D2опт L cos w cos3 k(w) осср dS/(4H2 dS)
Т.к. согласно (*) dS/dS= cos3w cos-3 (H/f)2, то окончательно получаем
Eиз = /4 (Dопт/f)2 L k(w) опт ср cos4w (****)
Описание геометрических форм
Описание поверхностей
Параметрическое описание поверхностей
Поверхности, заданные в форме
Х = Х(u,t) где u,t - параметры, изменяющиеся в
Y = Y(u,t) заданных пределах,
Z = Z(u,t),
относятся к классу параметрических. Для одной пары значений (u,t) вычисляется одна точка поверхности.
Параметрическое задание плоскостей.
Плоскость, проходящая через точку r0 =(х0,y0,z0) и векторы
исходящие из этой точки определяются уравнением:
или
Данное уравнение описывает прямоугольник со сторонами, равными
и
, если
, а u,t[0,1]. Нормаль к поверхности можно получить, вычислив векторное произведение:
Эллипсоид
Каноническое уравнение:
a, b,c- длины полуосей эллипсоида
Параметрическое задание:
x a coscos где - долгота , - ширина
y b coscos
z c sin
Нормаль к поверхности эллипсоида определяется:
Общие случаи нормали к поверхности
Пример: Описание тороида
где a- радиус кольцевого «баллона» тороида и R - расстояние от центра тороида до оси «баллона».
Преимущества параметрического описания поверхности :
-
Важным преимуществом параметрического описания поверхностей является возможность передачи очень сложных геометрических форм, описание которых другими методами затруднительно.
-
Параметрическое описание поверхности приспособлено к физическим процессам управления резцом в станках с числовым программным управлением. Резец вытачивает деталь, двигаясь в пространстве по закону, заданному параметрическим описанием.
-
Параметрический подход единственно приемлемый для моделирования сложных, гладких участков поверхностей при помощи сплайновой аппроксимации.
Недостаток параметрического описания поверхности:
Параметрическое описание предусматривает, что исходной позицией луча, строящего изображение, является точка на объекте, что затрудняет применение алгоритмов синтеза изображений с иной начальной позиции луча. Например: алгоритм трассировки лучей. Это свойство ограничивает изобразительные возможности: ограничено моделирование теней, передача прозрачности и зеркального отображения соседних объектов.
Описание поверхностей неявными функциями
Поверхности описываются функцией вида f(X,Y,Z)=0, где X,Y,Z - координаты из пространства объекта.
Наиболее распространены функции первой и второй степени, существуют аналитические методы для решения уравнений третей и четвертой степени, однако они применяются редко.
AX+BY+CZ+D=0 описывает плоскость
AX2+BY2+CZ2+2DXY+2EYZ+2GX+2HY+2JZ+K=0 в зависимости от значений коэффициентов можно описывать пары плоскостей (вырожденный случай), конусы, гиперболоиды, параболоиды и эллипсоиды.
Пример: Неявная форма задания поверхностей хорошо приспособлена для твердотельного или объемного описания объектов. Неявная форма хорошо сочетается с алгоритмами трассировки лучей т.к. легко определяются взаимное положение точки и поверхности такого типа, а также точки пересечения прямой и поверхности.
Поточечное описание поверхностей.
Метод заключается в задании поверхности множеством принадлежащих ей точек. Следовательно качество изображения при этом методе зависит от количества точек и их расположения.
Поточечное описание применяется в тех случаях, когда поверхность очень сложна и не обладает гладкостью, а детальное представление геометрических особенностей важно для практики.
Пример: Участки грунта на других планетах, формы небесных тел, информация о которых получена в результате спутниковых съемок. Микрообъекты, снятые с помощью электронных микроскопов.
Исходная информация о поточечно описанных объектах представляется в виде матрицы трехмерных координат точек.
Синтез изображений методом обратной трассировки лучей
Трассировка лучей связана с моделированием геометрического пути каждого светового луча, участвующего в построении изображения. Трассировка лучей - моделирование лучевой оптики, применительно к задачам компьютерной графики.
Основная идея метода
ЭВМ повторяет все геометрические преобразования, происходящие с каждым световым лучам на пути источник - объект - приемник. Хотя бесконечное количество, для построения изображения достаточно ограничится рассмотрением тех лучей, которые попадают в центр рецептора или исходящих из ограниченного числа точек на изображаемую поверхность. Подобно некоторым разделам геометрической оптики при компьютерном моделировании реальный ход лучей в объективах не анализируется. Для построения изображения используют кординальные элементы оптической системы (главная и фокальная точки, а также соответствующие плоскости).
В соответствии с принципами геометрической оптики сопряженные точки в пространстве предметов и изображений лежат на прямой, проходящей через заднюю главную точку оптической системы. На основании закона обратимости можно синтезировать путь луча как в направлении объект - изображение, так и в обратном. Отсюда различия между прямой и обратной трассировкой лучей.
При прямой трассировке за исходную позицию берется вычисляемая на изображаемой поверхности точка 1, из нее моделируется путь луча на источник света 2 и на приемник изображения - точка 3.
При обратной трассировке берется центр рецептора 1 на приемнике изображения и моделируется путь луча на объект 2 и далее на источник света - точка 3.
Система координат, применяемая в методе обратной трассировке лучей
Сцена - совокупность изображаемых объектов, включая при необходимости поверхность основания.
Система координат сцены - правая прямоугольная система координат, общая для всей сцены Xc Yc Zc.
Объект - совокупность точек пространства, объединенных функциональной общностью с точки зрения конкретно-целевой задачи.
Соответственно для каждого объекта вводится своя правая прямоугольная система координат XYZ.
Экранная система координат - система координат X1Y1Z наблюдательной системы. Данная система координат выбирается левой.
По аналогии c физическими устройствами ось z соответствует главному лучу объектива, плоскость xy - задней фокальной плоскости, а центр проекции F располагается на оси OZ в точке (0,0,f) и сопоставляют с задней главной точкой объектива.
Модель приемника света
Так как исходной позицией для трассировки луча является центр рецептора, то алгоритм начинает работу с определения пространственного расположения всех рецепторов .
В плоскости xoy экранной системы располагается матрица точечных приемников, где c и d шаг сетки рецепторов по оси x и y. Координаты рецептора (xij, yij,0) могут быть вычислены на основании его индексов:
xij = c(j- J/2 -1/2)
yij = d(I/2-i+1/2), где I,J - максимальное значение соответствующих индексов
Преобразование координат из экранной системы в объектную
xyzXYZ
[X,Y,Z,1]=[x,y,z,1] M
M - матрица порядка 4, являющееся обратной матрице M, связывающей объектную правую и экранную левую системы.
Модель объекта
Примитивы
В методе обратной трассировки лучей трехмерные объекты выгодно представлять в виде отдельных строительных блоков, поверхности которых можно описать кривыми первого и второго порядка.
Определение: Функциональным объемом называется некоторая часть пространства (не обязательно конечная), охватываемая поверхностью одной функции. Принадлежащим телу объекта считается подпространство, выделяемое поверхностью f (x,y,z)=0 в любой точке которого, значение скалярного поля f (x,y,z)>0. Такое подпространство именуется положительным.
Определение: Объемный примитив - конечный участок пространства, ограниченный одной или несколькими функциональными поверхностями.
Определение: Плоский примитив - часть плоскости, ограниченная замкнутой линией, состоящей из конечного числа прямолинейных или криволинейных участков.














