30830-1 (663173), страница 2

Файл №663173 30830-1 (Разработка системы теплоснабжения) 2 страница30830-1 (663173) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

– 2% в диапазоне расхода воды и конденсата от 4 до 100%.

Счетчики пара должны обеспечивать измерение массы теплоносителя с относительной погрешностью не более:

– 3% в диапазоне расхода пара от 10 до 100%.

Для прибора учета, регистрирующего температуру теплоносителя, абсолютная погрешность t, С, измерения температуры не должны превышать значений, определяемых по формуле:

t = (0,6 + 0,004*t),

где t температура теплоносителя.

Приборы учета, регистрирующие давление теплоносителя, должны обеспечивать измерение давления с относительной погрешностью не более 2%.

Приборы учета, регистрирующие время, должны обеспечивать измерение текущего времени с относительной погрешностью не более 0,1 % [3].

Одним из тепловычислителей, который может найти применение в системе может стать Тепловычислитель Многофункциональный Микропроцессорный ТВМ-441.

Тепловычислитель многофункциональный микропроцессорный ТВМ-441 (в дальнейшем - тепловычислитель) предназначен для сбора, обработки и регистрации информации о количестве полученной потребителем или выработанной производителем тепловой энергии, температуре, давлении, объеме (массе) теплоносителя и о времени работы в открытых и закрытых водяных системах теплоснабжения при давлениях до 1,6 МПА (16 кг\см2) и температурах до +150 °С.

Область применения - теплоэнергетика, системы коммерческого учета расхода горячей воды и тепловой энергии, автоматизированные систем сбора и обработки данных тепло и водопотребления.

Оборудован энергонезависимым таймером реального времени и обеспечивает вычисление следующих параметров по заданной гидравлической схеме:

– массы теплоносителя в трубопроводах систем теплоснабжения;

– разность температур;

– разность давления;

– потребленной тепловой энергии;

– тепловой мощности.

Производит диагностику датчиков, линий связи и напряжения батареи (аккумулятора), также контроль данных поступающих от датчиков. Информация о неисправностях архивируется и сохраняется в энергонезависимой памяти.

Установочные параметры тепловычислителя вводятся с клавиатуры с ограниченной возможностью доступа, обеспечивается вывод на жидкокристаллический индикатор необходимой информации по требованию, осуществляется установка необходимых параметров с помощью iButton фирмы Dallas Semiconductor, обеспечивается прием необходимых параметров и передача информации по спецификации RS485, RS232. Имеет возможность питания от сети переменного тока 220В 50Гц, обеспечивает передачу необходимой информации с помощью iButton в компьютер, имеет возможность включения в информационную сеть с другими тепловычислителями и компьютером по спецификации RS485, обеспечивает работу в автономном режиме (без внешнего источника питания).

Измерение температуры:

(Для измерения разности температур необходимо использовать подобранные пары датчиков)

– количество измерительных каналов - 4;

– тип температурных датчиков - термометры сопротивления, градуировочные характеристики Pt100 или Pt500;

– диапазон измерения температуры - +1…+150 °С;

– абсолютная погрешность измерения, не более ± (0,2 +0,04t) °С;

– абсолютная погрешность измерения разности температур - не более ± 0.1 °С;

– схема включения датчика - 3-х проводная;

– длина линии связи до датчика, - не более 100м.

Измерение расхода (массы) теплоносителя:

– количество измерительных каналов - 4;

– типы водосчетчиков (расходомеров) (выходной сигнал - импульсный) - ОСВИ Ду 25..40, ВМХ, ВМГ Ду 40…300, ВЭПС-ТИ Ду 20…200, ДНЕПР-7 Ду до 1600 и им аналогичные;

– диапазон измерения расхода (массы) - определяется типом водосчетчика;

– абсолютная погрешность измерения - ± 1 импульс;

– длина линии связи до датчика, не более - 100м.

Измерение давления теплоносителя в трубопроводах:

– количество измерительных каналов - 1;

– типы манометров (выходной сигнал 0-5мА, 0-20мА или 4-20мА) - САПФИР- 22М, САПФИР-100, СТАРТ-400 и им аналогичные;

– диапазон измерения - 0 - 1,6 МПА;

– относительная приведенная погрешность измерения выходного сигнала, не более - ±0,5%;

– длина линии связи до датчика, не более - 100м;

– относительная приведенная погрешность, не более - ±0,01%.

Вычисление тепловой энергии производится при разности температур не менее 0,1°С.

Измерение параметров и их архивация производится с дискретностью по времени 1час.

Время работы тепловычислителя в автономном режиме не менее 1 года.

Тепловычислитель имеет климатическое исполнение УХЛ 4 по ГОСТ 15150. По устойчивости к климатическим воздействиям - группа исполнения В4 по ГОСТ12997 и рассчитан на эксплуатацию при температуре окружающего воздуха от +1 до +50 °С и относительной влажности не более 95%.

Тепловычислитель имеет степень защиты IP65 по ГОСТ 14254.

По устойчивости к механическим воздействиям тепловычислитель относится к виброустойчивому и вибропрочному исполнению группы 1 по ГОСТ12997.

Тепловычислитель устойчив к воздействию внешнего магнитного поля напряженностью до 400А/м, изменяющегося синусоидально с частотой 50 Гц [4].

1.2. Задачи, которые должны решать периферийные устройства системы

На данный момент реализации ТМС выполняет функции телеизмерения и телесигнализации. Проектируемая система является комплексом из трех основных частей:

– аппаратных средств (датчики, радиостанции, преобразователи);

– программного обеспечения для компьютера;

– математического обеспечения, содержащего правила и формулы преобразования информации.

Аппаратно-программный комплекс предназначен для передачи значений контролируемых параметров на значительное расстояние от объектов контроля. Основная задача, которая решается при создании телеизмерительной аппаратуры, заключается в том, чтобы обеспечить возможность измерения как электрических, так и неэлектрических параметров с высокой степенью точности. С этой целью любая измеряемая величина преобразуется в другую, вспомогательную величину, удобную для передачи по каналу связи, которая не искажалась бы каналом связи, не зависела от действия помех и могла передаваться с минимальной затратой энергии.

Система телесигнализации позволяет на расстоянии следить за работой оборудования тепловой насосной станции (состояние насосов) или пунктом учета, а также система должна оповещать диспетчера об аварийных ситуациях, возникающих в том или ином месте, так как обслуживающий персонал отсутствует.

Устройства телесигнализации состоят из передающей и приемной аппаратуры и линии связи. Сигналы в этих устройствах передаются в виде отдельных кодов и классифицируются по назначению. В настоящей телемеханической системе телеизмерения применяется для передачи сигналов служебного назначения, вызова датчиков, воздействия на настройку автоматических регуляторов.

1.3. Возможные пути решения задач периферийными устройствами системы

В связи с наложенными жесткими ограничениями на качество и оперативность передачи измеренных параметров, возможным путем решения вышеперечисленных задач будет являться применение в качестве основного передающего узла однокристальной ЭВМ.

При получении сигнала с диспетчерского пункта на считывание информации с тепловычислителя, микроЭВМ производит считывание требуемых параметров в свою память и после этого транслирует их с помощью модема и радиостанции на диспетчерский пункт.

В такой схеме будет достигнута максимальная защищенность данных от искажений при передаче внутри контроллера, который в основном состоит из однокристальной ЭВМ, которая, как видно из ее названия, выполнена на одном кристалле, и, следовательно, имеет очень высокую надежность.

2. Структурные решения

2.1. Разработка функциональной структуры

Функции системы определяются, исходя из необходимости операций получения, сбора, передачи, обработки , хранения регистрации и представления информации. Поясним некоторые функциональные преобразования телемеханической информации.

Насосная станция представляет собой контролируемый пункт, на котором осуществляется получение информации следующего вида: предупредительной и аварийной, о работе оборудования, о значениях температуры теплоносителя. Полученная информация должна быть преобразована в электрические сигналы, с последующим преобразованием этих сигналов. Далее сигналы преобразуются для передачи их по каналу связи. От каждой насосной станции по своему каналу связи сигналы передаются на диспетчерский пункт, где происходит расшифровка сигналов, производится предварительная обработка и преобразование информации, которая поступает в компьютер. Результаты обработки выдаются на дисплей компьютера или принтер.

На пункте учета тепловой энергии информация от датчиков телеизмерения и телесигнализации поступает в преобразователи информации, в которых эта информация преобразуется в нормализованные электрические сигналы. Эти сигналы по проводным линиям связи передаются на тепловычислитель.

Тепловычислитель производя математические операции по заранее известным формулам для расчета количества теплоты, объема (массы) теплоносителя, по разнице давлений, температур и расходу теплоносителя в подающем и обратном трубопроводах определяет необходимые параметры.

С тепловычислителя информация байт за байтом поступает на контроллер. Тепловычислитель способен хранить и передавать архив накопленной информации за 40 дней. В архиве хранятся среднесуточные значения параметров. Существует режим передачи мгновенных параметров системы контроля. Вместе с мгновенными параметрами передаются среднечасовые значения.

К контроллеру также подключены датчик защиты от взлома пункта учета тепловой энергии (охранный), пожарной безопасности и датчик затопления. При обнаружении сигнала от одного из этих датчиков контроллер связывается с диспетчерским пунктом и передает сигнал тревоги, по которому операторы должны принять соответствующие меры.

Далее контроллер передает данные на модем, который в свою очередь кодирует сигналы и передает их на радиостанцию, которая, соответственно отправляет эти сигналы в эфир.

На диспетчерском пункте установлена радиостанция для обмена сигналами с пунктом учета тепловой энергии. Большую часть времени радиостанция на диспетчерском пункте находится в режиме “прием”. При этом постоянно анализируется информация, получаемая из эфира. Информация передается сплошным непрерывным потоком байтов, причем в начале каждого цикла измерений восемь байт - идентификатор контроллера, и восемь зарезервированных байт - “пароль”.

Компьютер диспетчерского пункта организует поочередный пунктов учета тепловой энергии, подключенных к телемеханической системе. В течение нескольких секунд компьютер осуществляет обмен информацией только с одной (выбранной им) станцией. В виду того, что диспетчерский пункт объединен с контролируемым пунктом, устанавливается еще устройство ввода информации в компьютер, так как здесь телемеханическая информация не будет передаваться по линии связи. Компьютер обрабатывает принятую и выдает полученную информацию на экран монитора. Кроме того, в памяти компьютера содержится вся информация о работе подключенных к системе, насосных станций в течение 24 часов.

2.2. Разработка технической структуры периферийного устройства

Система для телемеханизации тепловых насосных станций представляет собой комплекс, состоящий из трех частей: аппаратных средств (датчики, радиостанции, преобразователи и т. д.), программного обеспечения для компьютера и контроллеров, математического обеспечения, содержащего правила и формулы преобразования информации. Рассмотрим подробнее на аппаратных средствах.

2.2.1. Датчики

Датчики - это устройства, предназначенные для непрерывного преобразования измеряемых параметров в электрические сигналы, которые могут быть использованы в системе для дальнейшего преобразования и передачи на расстояние. Кроме того, под датчиками будем понимать элементы приборов и технологического оборудования, с помощью которых может быть сформирован электрический сигнал, содержащий информацию о предаварийном или аварийном значении контролируемого параметра или какую-либо другую информацию. При выборе датчиков учитываются следующие факторы:

– допустимую для данной системы погрешность, определяющую класс точности датчика;

– инерционность датчика, характеризуемая его постоянной времени;

– пределы измерения, перекрывающие диапазон возможных значений измеряемого или контролируемого параметра;

– влияние физических параметров контролируемой и окружающей среды на нормальную работу датчика;

Характеристики

Тип файла
Документ
Размер
379,07 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6629
Авторов
на СтудИзбе
294
Средний доход
с одного платного файла
Обучение Подробнее