13372-1 (662961), страница 2

Файл №662961 13372-1 (Исчисление высказываний) 2 страница13372-1 (662961) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

(pq) p

Построим сначала таблицу истиности для (pq), обозначив это выражение через s, затем построим таблицу истиности для p, обозначив это выражение через r, и, наконец, построим таблицу истиности для s r. В таблице 5.4. показан этот процесс.

Таблица 5.4.

Таблица истиности для выражения (pq) p.

p

q

s = pq

r =p

s r

T

T

T

F

F

T

F

T

F

F

F

T

T

T

T

F

F

F

T

T

Нетрудно видеть, что число строк в таблице истиности растет как степень 2 от числа переменных в выражении. Один из способов сокращать число строк - опускать те состояния, которые не влияют на результат. Например, в выражении pq , если p=T, то не важно какое значение у q, - значение всего выражения будет T. В таблице 5.5. показано применение этого приема.

Таблица 5.5.

Вычисление значения выражения (pq) (r(pS)),

не используя незначащие состояния.

p

q

r

s

(pq)

(r

(ps))

F

-

-

-

F

T

-

-

-

F

-

-

F

T

-

-

T

T

T

-

T

T

T

-

T

T

F

T

T

T

T

T

T

T

F

F

T

F

F

F

Нетрудно видеть, вычисление “в лоб” таблицы истиности для этого выражения потребовало бы таблицы из 24=16 строк. Используя прием незначащих состояний, удается сократить число рассматриваемых состояний до 5.

Тавтология.

Высказывания, которые истинны при любом состоянии своих переменных, играют особую роль и называются общезначимыми или тавтологиями.

Определение 5.2. Тавтология - высказывание, значение которого - Т на любом состоянии переменных этого выражения. Противоречие - высказывание, значение которого - F, на любом состоянии переменных этого выражения.

Для доказательства утверждения, что некоторое выражение - тавтология, у нас пока есть только таблицы истиности. Докажем, что pp - тавтология. Ниже показана таблица истиности для pp (Таблица 5.6.)

Таблица 5.6.

Таблица истиности для pp

p

p

pp

T

F

T

F

T

T

Эта таблица подтверждает наше интуитивное представление о том, что утверждение и его отрицание не могут быть истинны одновременно. Эта тавтология в исчислении высказываний называется законом исключения третьего.

Рассуждения с помощью исчисления высказываний.

Прежде всего, надо обеспечить способ сравнения двух высказываний на эквивалентность, для того, чтобы, при необходимости, заменять одно другим. Так же, нам потребуется техника для обнаружения тавтологий, более мощная, чем таблица истиности. И, наконец, мы рассмотрим методы рассуждений, которые могут быть полезны для разрешения логических проблем, сформулированных на естественном языке. Все это нам потребуется для анализа различных свойств как алгоритмов, так и программ на языке программирования Pascal.

Эквивалентность.

Рассмотрим высказывание

(pq)(pq).

Его таблица истиности представлена в таблице 5.7.

Таблица 5.7.

Таблица истиности для (pq)(pq)

p

q

(pq)(pq)

T

T

T

T

F

T

F

T

F

F

F

F

нетрудно заметить, что последний столбец в этой таблице совпадает со столбцом для p. Поэтому, можно сказать, что с этой точки зрения выражение (pq)(pq) эквивалентно p, и везде, где мы встретим это выражение, мы можем его заменить на p.

Как мы уже отмечали, одной из наших забот является упрощение сложных высказываний. Поэтому, для упрощения выражений, мы определим, что означает для двух выражений быть эквивалентными и заменим более сложное на менее сложное.

Определение 5.3. Два высказывания называются эквивалентными, если они на одних и тех же состояниях своих переменных принимают одни и те же значения.

Другими словами, если эти высказывания имеют одинаковые таблицы истиности, то они эквивалентны. Таким образом, один способ установить эквивалентность двух высказываний - вычислить их таблицы истиности и сравнить. Мы, однако, воспользуемся другим способом.

Теорема 5.1. Два высказывания p и q - эквивалентны (обозначается pq) тогда и только тогда, когда pq - общезначимо.

Доказательство:

Пусть pq. Значит таблицы истиности для p и q совпадают. Следовательно, на тех состояниях, где p=Т, q=Т также, а где p=F, то и q=F. Отсюда следует, что pq всегда Т (поскольку мы имеем либо ТТ, либо FF), т.е. pq - общезначимо или тавтология.

Пусть pq -общезначимо. Тогда если p=Т, то q должно быть Т, а если p=F, то и q должно быть F.

Таким образом, на одних и тех же состояниях эти выражения принимают одинаковые значения. Следовательно, таблицы истиности для p и q совпадают. Последнее означает по определению , что pq.

(Доказательство закончено.)

Эта теорема показывает, что установить эквивалентность можно, доказав общезначимость специального высказывания.

Свойства эквивалентности.

Основные, часто используемые свойства эквивалентности приведены в таблице 5.8.

Таблица 5.8.

Свойства эквивалентности

I.

Коммутативность

II.

Ассоциативность

1.

pq qp

1.

p(qr) (pq)r

2.

pq qp

2.

p(qr) (pq)r

III.

Дистрибутивность

IV.

Закон Де Моргана

1.

p(qr) (pq)(pr)

1.

(pq) pq

2.

p(qr) (pq)(pr)

2.

(pq) pq

V.

Закон импликации

VI.

Закон прямого и обратного условий

1.

pq pq

1.

pq (pq)(qp)

VII.

Cвойство отрицания

VIII.

Закон идентичности

1.

(p) p

1.

p p

IX.

Закон исключения третьего

X.

Закон противоречия

1.

pp Т

1.

pp F

XI.

Свойства дизъюнкции

XII.

Коньюнкция

1.

pp p

1.

pp p

2.

pÒ Т

2.

pÒ p

3.

pF p

3.

pF F

4.

p(pq) p

4.

p(pq) p

Нетрудно углядеть сходство многих свойств эквивалентности в исчислении высказываний с аналогичными свойствами операций в арифметике. Например, законы ассоциативности, дистрибутивности и коммутативности, позволяющие упрощать арифметические операции и аналогичные законы из таблицы 5.8., позволяющие упрощать высказывания.

Мы будем использовать эти свойства в разных целях. Коммутативность, например, позволяет нам менять местами элементы высказывания , в целях его упрощения. Ассоциативность позволяет снимать скобки. Например, т.к. p(qr) (pq)r , то мы можем просто писать pqr. Дистрибутивность позволяет собирать подобные члены, подобно тому как мы это делаем в арифметическом выражении. Закон импликации позволяет уходить от операции , используя только операции , , . Для того, чтобы убедиться в правильности этих свойств, достаточно построить их таблицы истиности. Например, в таблице 5.9. показана корректность закона импликации. Остальные свойства читателю предлагается доказать в качестве упражнения.

Таблица 5.9.

Доказательство корректности закона импликации

p

q

pq

p q

T

T

T

T

T

F

F

F

F

T

T

T

F

T

T

T

Теперь сосредоточимся на упрощении выскзываний, используя свойства эквивалентности. Под упрощением мы будем понимать такое преобразование высказывания, которое принимает форму, удобную для нас в каком-то смысле. Например, содержит меньше переменных, операций или .

Рассмотрим несколько примеров.

(pq)r(pq)

(pq)(pq)r I.1

(qp)(pq)r I.2

(qp)(pq)r V.1

(pq)r VI.1

Таким образом

(pq)r(pq) (pq)r

Другой пример, упростить

p(qp)q

p((qp)q V.1

p(qp)q VII.1

p(qp)q I.2

(pp)(qq) II.2

p(qq) XI.1

pT IX.1

T XI.2

Тем самым, мы доказали, что

p(qp)q Т - тавтология.

Упростить

Характеристики

Тип файла
Документ
Размер
842,57 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее