8770-1 (662917), страница 2

Файл №662917 8770-1 (Планирование поставок торговой фирме с использованием имитации и генетического алгоритма) 2 страница8770-1 (662917) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

где i - номер товара, G2i-1 и G2i - представления в виде десятичных чисел закодированных в семи битах значений точек заказов.

Имея эти формулы для любой особи возможен обратный пересчет из генов особи в критические и предкритические уровни запасов для каждого наименования товаров.

Оптимизируемой величиной является функция пригодности (ФП), рассчитываемая для особей. Используемая нами реализация ПГА из [9], находит особь с максимальной ФП, поэтому необходимо выбрать такую ФП, которая растет с уменьшением значения критерия W. Ее вид определен в результате моделирования работы фирмы с типовыми значениями годовых затрат на хранение единицы товара, неустойках за задержку отгрузки клиентам единицы товара каждого наименования на один день, объемов упаковки, отнесенных к единице товара, объема грузовика, стоимости поездки одного грузовика и организационных затрат на поставку товаров. При этом было выяснено, что в суммарных потерях всегда присутствует такая составляющая, как потери от хранения. Изменение этой составляющей для различных комбинаций точек заказов невелико из-за невысоких значений годовых затрат на хранение. Поэтому в качестве ФП была выбрана показательная функция, которая быстро растет с ростом показателя степени:

, (*)

где H - функция пригодности, Wmax - максимально возможное значение потерь, которое выбрано на основании результатов моделирования с превышением максимальной полученной величины суммарных потерь на два порядка. Если для какой-либо особи значение суммарных потерь превысит Wmax, у этой особи будет очень малое значение функции пригодности.

Основными параметрами генетического алгоритма являются: количество особей в поколении, число поколений, вероятность скрещивания, вероятность мутации. Значения этих параметров были взяты из результатов исследований [9].

Исходная популяция генерируется случайным образом, при этом создаются особи со значениями генов от 0 до 127. Число генерируемых особей равно размеру поколения.

Расчет ФП ведется имитацией работы фирмы в течение квартала, то есть, для каждой особи осуществляется прогон, по окончании которого рассчитывается ФП по формуле (*). В ходе прогона осуществляется принятие решений о заявках на поставки. При этом для определения критического и предкритического уровней для каждого наименования товара производится расшифровка особи, и полученные значения точек заказов используются при принятии решений.

Результатом решения оптимизационной задачи является лучшая особь по всем поколениям. Значения точек заказов, которые будут использоваться в торговой фирме при принятии решений о заявках на поставки в процессе работы на квартале осуществляются путем расшифровки лучшей особи. Далее определяем планы поставок, взяв значения критических и предкритических уровней из лучшей особи, как заказанные поставки в течение периода моделирования - квартала.

Результаты работы системы планирования поставок

Эксперименты проводились на различных по напряженности (среднесуточный спрос по каждому наименованию товара) портфелях заказов от клиентов. Так как из-за большого числа характеристик и их комбинаций трудно привести интегральную характеристику, однозначно характеризующую данный портфель, были проведены эксперименты для трех вариантов портфелей. Эти портфели различались средним количеством товара в заказе по каждому наименованию товара и каналу, а также интервалами времени между приходами заказов по каждому из каналов.

Рис. 3. Интервалы между приходами заказов

Рис.4.

Значения этих характеристик портфелей заказов приведены на рис. 3, 4. При этом введена следующая нумерация каналов: 1 - канал крупных оптовиков, 2 - канал магазинов, 3 - канал дилеров, 4 - канал представительств фирмы.

Значения спроса за время доставки для всех наименований товаров и различных портфелей определялись на основе сгенерированных портфелей (среднесуточный спрос, умноженный на время доставки). Этот спрос характеризует потребление товара с момента выдачи на него заявки производителю до его получения на склад.

Для сравнения, на ИМ был смоделирован случай работы фирмы, когда значения точек заказа назначались эвристическим путем. Они были выбраны следующим образом:

критические уровни брались в среднем с двукратным превышением величины среднесуточного спроса умноженной на время доставки;

предкритические уровни брались, исходя из вероятности прихода заказа на товар данного наименования.

Оценка суммарных потерь для этого случая и для каждого из портфелей производилась путем прогона модели на интервале времени равном кварталу с данным портфелем заказов и данными точками заказов.

Диапазоны варьирования точек заказов были выбраны следующим образом:

для критических уровней - в среднем с пятикратным превышением среднесуточного спроса, умноженным на время доставки;

для предкритических уровней диапазоны были выбраны одинаковыми и равными максимальному значению предкритических уровней для случая выбора их экспертом - 400%.

Оценка суммарных потерь может быть получена на основе моделирования работы фирмы на квартале для лучшей по всем поколениям особи. Оптимизация с помощью ПГА проводилась для 20 особей в поколении, 20 поколений, вероятности скрещивания - 0.7 и вероятности мутации - 0.06.

Рис. 5. Изменение значения ФП по поколениям для портфеля №1

Результаты экспериментов с использованием ПГА представлены на рис.5. Здесь приведено изменение функции пригодности по поколениям. По результатам экспериментов (рис. 5) можно отметить, что рост среднего значения функции пригодности по популяциям (поколениям) (от 0,220357*103 до 0,388829*103 - для первого портфеля, от 0,132561*103 до 0,334439*103 - для второго портфеля, от 0,00155367*103 до 0,0135357*103 - для третьего портфеля) демонстрирует работоспособность алгоритма, а максимальное значение ФП в пересчете на критерий W дает устойчивое (в среднем около 60%) снижение потерь по сравнению со случаем назначения точек заказа на основе среднего спроса за время доставки (табл. 2).

Заключение

Результаты проведенных экспериментов показали эффективность комплексного применения ИМ и ПГА к решению сложных оптимизационных задач планирования поставок товаров на многономенклатурный склад торговой фирмы, однако необходимы дальнейшие исследования для выбора параметров ПГА, обеспечивающих лучшую сходимость, а, следовательно, и эффективность.

Подтверждена возможность разработки гибридных систем, комплексно использующих ИМ и оптимизационных процедур на основе единого инструментального средства - языка РДО, что говорит о его универсальности и гибкости.

Список литературы

Ballow R.H. Product Storage and Warehousing // Basic Business Logistics. Transportation, Materials, Management, Physical Distribution / 2-d edition. - NY, Prentice-Hall International Edition, 1987. P. 192 - 272.

Емельянов В.В., Ясиновский С.И. Продукционный имитатор производственных систем и процессов // Вестник машиностроения, 1992, № 5. С. 41 - 45.

Емельянов В.В., Ясиновский С.И. РДО - продукционный язык имитационного моделирования сложных дискретных систем: Учебное пособие по курсам “Моделирование технологических и производственных процессов”. - М.: Изд-во МГТУ, 1995. - 91 с.

Емельянов В.В., Ясиновский С.И. Гибридная система для планирования производства на основе генетических алгоритмов, методов имитации и экспертных систем// Известия ТРТУ, 1996, № 3. С. 4 - 9.

Reane F., Artiba A., Elmaghraby S.E. Sequencing on hybrid two stages flowshop to minimize makespan //ICOQM’s proceedings Jaipur, II, 1996. P.572-579.

Emelyanov V.V., Yasinovsky S.I. An AI-based object-oriented tool for discrete manufacturing systems simulation// Journal of Intelligent Manufacturing, Vol.8, Num. 1, February 1997. P.49-59.

Goldberg D.E. Genetic Algorithms in Search, Optimization and Machine Learning. - Addison Wesley Publishing Company, Inc., 1989. - 386 pp.

Holland J.H. Adaptive algorithms for discovering and using general patterns in growing knowledge-bases // Int. Journ. of Policy Analysis and Information Systems, 1980, P. 217 - 240.

Емельянов В.В., Крючков М.Ю., Штаутмайстер Т. Динамический оптимальный раскрой материала с использованием генетического алгоритма // Вестник МГТУ, сер.: Приборостроение, 1996, № 1, С. 78 - 86.

Характеристики

Тип файла
Документ
Размер
2,27 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее