theory (660690), страница 5

Файл №660690 theory (Основные представления о специальной и общей теории относительности) 5 страницаtheory (660690) страница 52016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Особая ценность этого эксперимента состоит в том, что процесс распада мюонов определяется слабым взаимодействием, в то время как СТО была построена для описания систем с электромагнитным взаимодействием.

2.8 Лоренцево сокращение длины

Стержень, расположенный вдоль оси 0X движущейся системы отсчета и покоящийся в ней, имеет длину l0. Если один из концов стержня (для простоты) сосвпадает с началом координат этой системы, то в момент t = 0 по часам лабораторной системы отсчета координаты концов стержня определяются преобразованием Лоренца:

x1 = 0, x2 = l = l0

________
1 - V2/c2

.


(18)

Длина движущегося стержня в лабораторной системе отсчета уменьшается в направлении движения. Это изменение длины называется сокращением Лоренца - Фитцджеральда.

Поскольку поперечные размеры тела не изменяются, то легко видеть, что объем тела также уменьшается:

V = V0

________
1 - V2/c2

.


(19)

3 Динамика специальной теории относительности

3.1 Энергия и импульс частицы

Под массой частицы m будем понимать ее массу, измеряемую в системе покоя частицы - массу покоя.

Релятивистским импульсом частицы массы m, движущейся в выбранной инерциальной системе отсчета со скоростью , называется векторная величина , определяемая формулой


p

=

m


v

________
1 - (v/c)2

.


(20)

Релятивистский импульс имеет ту же размерность, что и импульс в классической механике. При v/c  0, m (с точностью до линейных по v/c слагаемых).

Энергией частицы в релятивистской физике называется величина E, определяемая выражением

E =

m c2

________
1 - (v/c)2

.


(21)

Энергия имеет ту же размерность и измеряется в тех же единицах, что и энергия в ньютоновской механике.

Энергия частицы в той системе отсчета, в которой она покоится, называется ее энергией покоя E0:

E0 = mc2.


При  = v/c  0 релятивистское выражение для энергии частицы может быть записано в виде

E = mc2 +

m v2

2

= E0 +

m v2

2

.


Второе слагаемое совпадает с кинетической энергией частицы в классической теории. Разность E - mc2 = T называют кинетической энергией релятивистской частицы.

Из формул (20) и (21) находим полезную формулу для скорости частицы:


v

= c2


p

E

.


(22)



3.2 Релятивистские преобразования энергии и импульса

Рассмотрим вновь две инерциальные системы отсчета, движущиеся друг относительно друга со скоростью V в направлении оси x.

Закон преобразования для величин (E, ) и (E, ), измеряемых в системах S и S, имеет форму преобразования (23):

E =

E - V px

________
1 - (V/c)2

, px =

px - E V/c2

________
1 - (V/c)2

, py = py, pz = pz.


(23)

Таким образом,энергия и импульс частицы зависят от выбора системы отсчета, однако существует величина, которая имеет абсолютный смысл. Из формул (23) следует, что





E

c





2

-


p

2 =





E

c





2

-


p

2 = m2 c2,


из которого следует, что масса частицы одинакова во всех системах отсчета и, следовательно, является релятивистским инвариантом.

Рис. 10

Используя последнее выражение можно легко получить соотношение, связывающее энергию и импульс в релятивистской физике:

.

Эта зависимость энергии от импульса изображена на Рис. 10. При малых значениях импульса E = m c2 + p2/2 m, а при достаточно больших импульсах E = p c.

Иногда формулу (21), записывают в виде E = m(v) c2, вводя "релятивистскую массу" частицы, зависящую от скорости:

m(v) =

m

________
1 - (v/c)2

.


Саму же формулу (21) истолковывают, как "эквивалентность" энергии и массы в релятивистской физике. Однако такое утверждение приводит лишь к путанице (а в преждние времена вело даже к ожесточенным идеологическим спорам). Масса и энергия совершенно разные характеристики частицы. Масса - инвариант, а энергия - динамическая характеристика, зависящая от выбора системы отсчета. Взаимосвязь энергии и массы частицы имеет место только в системе покоя частицы.

Поэтому понятие "массы, зависящей от скорости" [(m)/([(1 - (v/c)2)])] лишено физического смысла!



3.3 Частицы с нулевой массой покоя

Если в формулах (20,21) формально положить скорость частицы v = c, то энергия и импульс частицы обращаются в бесконечность. Это значит, что частица с отличной от нуля массой покоя не может двигаться со скоростью света. В релятивистской механике однако предполагается, что существовуют частицы с массой покоя равной нулю, всегда движущиеся со скоростью света. Из (22) видно, что для таких частиц модуль импульса и энергия связаны соотношением:


p

 =

E

c

,


откуда следует, что здесь

(E/c)2 -


p

2

= 0


в соответствии с тем, что m = 0.

К частицам с нулевой массой покоя относятся, например, фотоны - кванты электромагнитного поля. В больших деталях их свойства будут обсуждены в разделе "Квантовая теория" - задание N 5.



3.3 Релятивистский эффект Доплера

Рассмотрим плоскую монохроматическую волну

E(


r

,t) = E0 cos





k

·


r

-  t




.


(23)

Здесь - частота волны, а = k - волновой вектор (k = [()/( c)] - волновое число, - единичный вектор в направлении распространения волны (см. Рис. 11).)

Рис. 11

Выясним закон преобразования частоты и волнового вектора при переходе в другую инерциальную систему отсчета. Будем для определенности считать, что волна распространяется под углом  к оси 0x, вдоль которой со скоростью V движется "штрихованная" система отсчета S. Из Рис. 11 видно, что существуют пространственно - временные точки, в которых векторы поля обращаются в нуль (узловые точки волны - те точки, в которых косинус равен нулю). Ясно, что это свойство поля носит объективный характер и должно выполняться во всех инерциальных системах отсчета. Отсюда следует, что фаза электромагнитной волны должна быть инвариантна!


k

·


r

- t =


k


·


r


- t.


В декартовых координатах это условие принимает вид:

kx x +ky y + kz z - t = kx x +ky y + kz z -  t.


(24)

Поскольку x, y, z, t связаны с x, y, z, t преобразованием Лоренца , то для обеспечения инвариантности фазы необходимо, чтобы выполнялись преобразования

=

- V kx

________
1 - V2/c2

, kx =

kx - V/c2

________
1 - V2/c2

, ky = ky, kz = kz.


(25)

Прямой подстановкой формул (25) в соотношение (24) можно проверить его выполнение.

Найдем теперь связю между частотой 0 в системе источника волны и частотой  той же волны в системе наблюдателя.

Полагая в первой формуле из (25)  = 0, kx = [()/( c)] cos, где - угол распространения волны относительно V в системе наблюдателя (приемника), найдем

 = 0

________
1 - V2/c2

1 - (V/c)cos

.


(26)

Эта формула выражает собой эффект Доплера - изменение частоты волны, вызанное относительным движением источника и приемника.

Характеристики

Тип файла
Документ
Размер
309,5 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее