25091 (654603), страница 2

Файл №654603 25091 (Разработка методов анализа деформаций подземных сооружений) 2 страница25091 (654603) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

И
спользуя координаты пункта и полученные координаты пункта В', вычисляется угол разворота φ полигонометрического хода между пунктами В и В' относительно пункта А, и определяется исправленное значение дирекционного угла первой стороны хода:

. (1)

Получив исправленное значение дирекционного угла (1), вычислим координаты пунктов полигонометрического хода. При этом координаты конечной точки хода В" будут находиться на прямой АВ (рис.1). Величина невязки хода ВВ" для вытянутого полигонометрического хода будет определяться в основном ошибками измерения длин линий хода и является исходной величиной для уравнивания хода. Контролем правильности вычислений в таком случае будет являться отсутствие поперечной невязки хода.

Получив невязки координат полигонометрического хода δx и δy (рис.1), можно вычислить продольный t и поперечный u сдвиги хода:

; ,

где - длина полигонометрического хода.

Оценка точности вычисления дирекционных углов подземного полигонометрического хода производится для вытянутого полигонометрического хода вдоль оси ординат при равных длинах сторон S. Ошибка угла разворота угла φ будет определяться величиной поперечного сдвига вытянутого хода и линейном виде будет равна:

,(2)

где n – число сторон в вытянутом полигонометрическом ходе; Δβi – истинные ошибки измерения углов поворота хода.

Ошибка угла разворота хода φ равна:

. (3)

В таком случае ошибка дирекционного угла полигонометрического хода, учитывая, что поправка в угол вводится со знаком, обратным поперечному сдвигу, равна:

С учетом (3) получаем:

. (4)

Переходя от истинных ошибок измерения к средним квадратическим, для равноточно измеренных углов хода, произведя суммирование (4), имеем:

.

На рис.2 показан характер изменения ошибки дирекционного угла вытянутого полигонометрического хода при количестве сторон 6, 8 и 10. Общей и необычной характеристикой полигонометрического хода, не имеющего примычных углов, является то, что наиболее точно определяется дирекционный угол в середине хода. На рис.2 приведены графики коэффициента k:

, где .

В
торой отличительной особенностью полигонометрического хода, опирающегося только на два пункта с известными координатами, заключается в том, что при небрежном выполнении расчетов нельзя исключать ситуации, при которой могут быть вычислены координаты "зеркального" полигонометричес-кого хода. Избежать подобной ошибки поможет вычисление левых или правых углов поворота полигонометрического хода и сравнение их с измеренными.

Средняя квадратическая ошибка определения дирекционного угла в середине подземного полигонометрического хода, обусловленная ошибками угловых измерений, практически равна средней квадратической ошибке измерения углов. При количестве сторон в подземном полигонометрическом ходе не более 10, и средней квадратической ошибке измерения угла 2-3", основной ошибкой может стать ошибка передачи координат в тоннель. В диссертации выполнен подробный анализ точности определения координат пунктов подземной полигонометрической сети.

Выполненный анализ точности показывает, что подземный полигонометрический ход, опирающийся на два пункта, вполне может обеспечить точность, необходимую для наблюдения за изменением положения тоннеля. Основным недостатком данного метода является слабый контроль возможных промахов при выполнении работ.

В таких условиях геодезические работы необходимо выполнять особенно тщательно, обеспечив повторные измерения, для надлежащего контроля.

ГЛАВА 3. АНАЛИЗ ДЕФОРМАЦИЙ КОЛЕЦ ТОННЕЛЯ

Внедрение в геодезию современных средств измерений привело к появлению новых задач. Такой задачей является обработка спутниковых результатов измерений, когда встает вопрос об учете ошибок исходных данных. Если использовать основную формулу метода наименьших квадратов в традиционной записи:

,(5)

то возникает новая проблема: как вычислить веса параметров уравнений Кеплера и поправочных коэффициентов?

Для этой задачи сформулирована новая целевая функция: минимум суммы квадратов остаточного рассогласования преобразованных координат и координат государственной или местной системы координат. Формулировка целевой функции отличается от целевой функции, предложенной Гауссом при разработке метода наименьших квадратов. При использовании новой целевой функции можно достичь желаемого результата и вычислить параметры преобразования, но при этом возникают две очень сложные проблемы:

  • как вычислить веса величин, используемых в обработке;

  • как выполнять оценку точности параметров преобразования и преобразованных координат, так как Гаусс разработал метод оценки точности для другой целевой функции.

К этому же классу задач относится и методика анализа деформаций колец тоннеля. Современные алгоритмы обработки результатов измерений предусматривают вычисление положения вероятнейшей окружности под условием минимума суммы квадратов расхождений реального положения колец тоннеля от вероятнейшего. Новая целевая функция не позволяет использовать при обработке результатов измерений все точностные характеристики измеренных и приближенно известных величин и выполнить объективную оценку как результатов измерений, так и их функций.

С развитием дальномерной техники в геодезии стали широко применять полигонометрию и линейно-угловые сети. При уравнивании таких сетей возникли трудности: как вычислять веса для угловых и линейных измерений? Вес – величина размерная или безразмерная? Этот вопрос станет понятен, если целевую функцию (5) записать в виде:

,(6)

где – веса угловых измерений; – поправки в угловые измерения; – веса линейных измерений; – поправки в линейные измерения.

Если вес – величина безразмерная, то в целевой функции (6) будут складываться, например, квадратные секунды с квадратными миллиметрами. В результате остро стоит вопрос о соотношении весов в угловых и линейных измерениях. Для того чтобы устранить возникшую парадоксальную ситуацию, можно записать формулу (6) в следующем виде:

. (7)

Средняя квадратическая ошибка единицы веса μ2, стоящая перед знаком суммы, не влияет на отыскание минимума, следовательно, целевую функцию (7) можно представить в окончательном виде:

. (8)

По сути, эта та же формула Гаусса, лишь записана она в другом виде. Однако такая форма записи снимает все трудности поиска соотношения весов между разнородными измерениями, так как под знаком суммы стоят безразмерные коэффициенты, если средние квадратические ошибки и поправки вычислены в единой размерности. Более того, целевая функция (8) позволяет вычислять поправки в любые величины, которые измерены или известны приближенно при совместной их обработке. В целевой функции (8) роль веса выполняет величина, обратная квадрату средней квадратической ошибки, что и рекомендовал Гаусс. Вводить в эту целевую функцию понятие веса бессмысленно, так как при обработке результатов измерений это ничего нового не прибавит и не убавит.

Аналогичная ситуация сложилась и при анализе результатов наблюдений за деформациями колец туннеля. По результатам угловых и линейных измерений вычисляют координаты нескольких точек по периметру тоннеля в условной системе координат, а затем вычисляют положение аппроксимирующей окружности под условием:

, (9)

где Δi – отклонение радиуса аппроксимирующей окружности от реального расстояния от оси тоннеля до обделки.

Целевая функция (9) позволяет вычислить интересующие параметры тоннеля, но не допускает учета точностных характеристик измеренных величин, и невозможно воспользоваться алгоритмом Гаусса для оценки точности вычисленных параметров тоннеля. К сожалению, целевая функция (9) нашла неоправданно широкое применение при решении инженерно-геодезических задач, несмотря на ее откровенные недостатки. Автором разработана методика обработки результатов измерений при наблюдениях за деформациями колец тоннеля с использованием целевой функции (8) при сохранении возможности выполнения оценки точности всех вычисляемых параметров тоннеля.

Обычно метод решения задачи в геодезии состоит из самостоятельных этапов.

Этап 1. Формулировка основной цели работы.

Выполнить анализ деформаций колец тоннеля c заданной средней квадратической ошибкой 3 мм. Под термином "деформация колец тоннеля" может подразумеваться: отклонение размеров тоннеля от проектного; отклонение размеров тоннеля от вероятнейшей окружности.

При анализе отклонений размеров тоннеля от проектного значения все проектные размеры при обработке входят как константы, и к ним не требуется вычислять поправки. В зависимости от поставленной задачи могут встречаться оба варианта анализа деформаций. В большинстве случаев в инженерно-геодезической практике задается несколько точностных характеристик, например, допуск на радиус тоннеля и допуск на отклонение от вероятнейшего радиуса тоннеля. В таком случае целесообразнее вычислять действительный размер собранного тоннеля. В дальнейшем примере будем рассматривать именно этот вариант, как наиболее характерный.

Этап 2. Выбор метода измерений, который решает поставленную задачу.

Одновременно с выбором метода измерений необходимо записать математические зависимости между измеряемыми и вычисляемыми величинами (в данном случае деформационные характеристики колец тоннеля). Строгая математическая зависимость между измеряемыми и вычисляемыми величинами полностью исключает дальнейший выбор каких-либо иных "независимых параметров". В том случае, если измеряемые и вычисляемые величины связаны нелинейными уравнениями, то приведение данной функции к линейному виду возможно лишь в том случае, если удастся найти приближенные значения именно вычисляемых величин, и в таком случае нет места другим "независимым параметрам".

Этап 3. Предварительная оценка точности с использованием метода наименьших квадратов, по результатам оценки точности выбор метода измерений, а также обоснование точности полевых измерений.

Этап 4. Полевые измерения.

Этап 5. Обработка результатов полевых измерений, вычисление уравненных значений искомых величин с оценкой их точности.

П роцесс измерения заключается в следующем. В некоторой точке А устанавливают инструмент и измеряют углы наклона βi, и расстояние Si до стенок тоннеля в нескольких точках, расположенных в вертикальной плоскости, перпендикулярной оси тоннеля. Зная проектные размеры тоннеля и выполнив дополнительные измерения можно определить приближенные координаты оси тоннеля относительно оси теодолита (рис.3) со средней квадратической ошибкой 3 - 4 см.

Используя полярные координаты Si и βi и их точностные характеристики, необходимо вычислить положение оси тоннеля, радиус тоннеля и деформационные характеристики тоннеля с объективной оценкой точности. Как видно из рис.4, уравнения, которые связывают измерения и интересующие нас величины, имеют вид:

,(10)

гдеR – радиус тоннеля; Δi – отклонение фактического положения стенок тоннеля от окружности; Si - расстояние от прибора до наблюдаемой точки; X – расстояние от прибора до центра тоннеля по оси Х; Y – расстояние от центра тоннеля до горизонтальной оси прибора по оси Y; φi – угол между направлением на центр тоннеля и наблюдаемой точкой. Учитывая, что

; (11)

Характеристики

Тип файла
Документ
Размер
2,06 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее