25003 (654573), страница 2

Файл №654573 25003 (Моделі та методи розразунку внутрішніх течій з урахуванням анізотропії відкритих турбулентних потоків) 2 страница25003 (654573) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

При розробці тривимірної моделі механізму внутрішніх течій локальну швидкість представляємо у загальноприйнятому вигляді, як суму осередненої на вертикалі та швидкості внутрішніх течій :

(1)

Нерівномірність розподілу швидкостей по вертикалі враховується за допомогою коефіцієнта та степеневого закону розподілу швидкостей по вертикалі (як найбільш відповідного до реальних умов):

(2)

На підставі аналізу результатів досліджень І.А. Шеренкова та В.Я. Савенка локальні швидкості на вертикалі представляються у вигляді співвідношень:

(3)

Посилаючись на наведені вище положення, що до процесу утворення внутрішніх течій, в модельному рівнянні поряд з турбулентними напругами ураховуються дотичні напруги , які обумовлені наявністю внутрішніх течій. Дотримуючись умов спрощення, отримана наступна модельна форма рівнянь:

(4)

(5)

(6)

(7)

Для складової швидкості внутрішніх течій отримане рівняння у вигляді:

(8)

Для врахування деформацій вільної поверхні потоку, які зумовлені наявністю значних градієнтів тиску в області розв'язування задачі, запропоновано рівняння:

(9)

де - глибина потоку на вертикалі.

Завершальний етап розрахунку швидкісного поля потребує перевірки виконання рівняння нерозривності. В разі його невиконання запропоновано ввести потенційну поправку , яка обумовлюється градієнтом повздовжньої швидкості . Малий порядок цієї поправки дозволяє не включати її до рівняння нерозривності, а використовувати лише для корекції швидкісного поля, яка врахована в алгоритмі розв'язування задачі, а математичний опис її має вигляд:

(10)

При чисельному моделюванні тривимірних ефектів у товщі турбулентного потоку для замикання математичного опису механізму внутрішніх течій застосовується модифікована модель, яка складається з рівнянь переносу кінетичної енергії та швидкості її дисипації, що отримані з рівнянь гідродинаміки і мають свою фізичну інтерпретацію:

(11)

(12)

Генерація кінетичної енергії визначається за формулою:

(13)

Модифікована модель цілком оптимальна для внутрішніх течій за анізотропного коефіцієнту турбулентної в'язкості , при її спільному використані з алгебраїчною моделлю переносу напруг Рейнольдса. Застосування алгебраїчних виразів переносу турбулентних напруг більш широко розкривають природу турбулентності та враховують її анізотропний стан. Ці вирази отримані з повних рівнянь переносу турбулентних напруг шляхом введення модельних співвідношень та їх спрощення. Алгебраїчні вирази можуть бути представлені у вигляді:

(14)

(15)

де - член генерації турбулентності, який характеризує перенос енергії від осередненої течії до пульсуючої;

або - індекси, які визначають напрямок декартової системи координат;

- символ Кронекера ( при та при ).

Коефіцієнт турбулентної в'язкості визначається по співвідношенню Колмогорова – Прандтля, яке використовується в двопараметричних моделях:

(16)

За показник, що характеризує анізотропний стан турбулентного потоку використовується тензор анізотропії , або девіатор тензора напруг, який дорівнює нулю для ізотропного поля та визначається співвідношенням:

(17)

Для забезпечення адекватного опису характеристик осередненої течії і турбулентності у тривимірному потоці, при наявності внутрішніх течій, залежність для величини визначається як функція відношення генерації кінетичної енергії до швидкості дисипації :

(18)

При реалізації розглядуваної задачі суттєвим є питання узгодженості розподілу швидкостей і поля гідродинамічного тиску, для опису якого запропоновано рівняння у вигляді рівняння Пуассона:

(19)

Запропоновані математичні моделі механізму внутрішніх течій дозволяють у новому аспекті розв'язувати задачу розрахунку цих течій.

У третьому розділі наведено методи реалізації запропонованих математичних моделей, представлених у фізичних координатах. Область розв'язування являє собою тривимірний простір зі змінними границями. Для універсалізації та спрощення алгоритму пропонується перейти до безрозмірних координат у області зі сталими границями.

У випадку безнапірного потоку довжиною ( ) із поперечним перетином довільної форми система координат заміняється “новою” системою координат - при цьому:

(20)

де - відмітки, відповідно, дна та берега русла від початку декартової системи координат.

Такий підхід дозволяє отримати рівномірну сітку в обчислювальній області, хоча вузли сітки у фізичному просторі можуть бути розташовані нерівномірно. При переході до “нових” координат у диференціальні рівняння вводяться матричні коефіцієнти перетворення.

Для реалізації дискретних аналогів рівнянь внутрішніх течій (4) – (6), (8), (9) та моделі турбулентності (11) – (12) використовується скінченнорізницевий метод типу предиктор - коректор по явній схемі Мак-Кормака, з розщепленням диференціальних рівнянь на одновимірні за просторовими координатами та часом. Використання явної модифікованої схеми Мак-Кормака, типу предиктор - коректор, обгрунтовується її гнучкістю, що дозволяє нестаціонарну тривимірну задачу звести до послідовного розв'язування одномірних маршових задач і створювати різноманітні модифікації в умовах накладення нерівномірної сітки на примежові зони потоку та великих чисел Рейнольдса; стійкістю при виконанні умови Куранта – Фрідріха – Леві; узгодженістю при співпаданні суми кроків для кожного скінченнорізницевого оператора та отриманні другого порядку точності результатів за першого порядку апроксимації вихідних операторів. У безнапірних змінних скорочений запис схеми має вигляд:

(21)

де

Для раціонального використання явної схеми Мак-Кормака за великих чисел Рейнольдса і для врахування впливу граничних умов на основний турбулентний потік, розв'язування ведеться за схемою у вигляді послідовності, яка задовольняє перерахованим критеріям:

(22)

де .

Умови стійкості для схеми Мак-Кормака представляються у вигляді:

- при

(23)

(24)

(25)

- при та

(26)

де - коефіцієнт запасу, ;

- припустимий крок у часі, згідно критерію Куранта – Фрідріха – Леві;

- мінімальне сіткове число Рейнольдса.

Чисельна реалізація алгебраїчних співвідношень для турбулентних напруг і рівнянь для гідродинамічного тиску і потенційної поправки проводиться методом послідовної верхньої релаксації на основі методу Гаусса - Зейделя. Корекція невідомих здійснюється за формулою:

(27)

де - номер ітерації;

, , - відповідно значення невідомих величин: останні, які обчислені по методі Гаусса – Зейделя, попередні та “підправлені”;

- параметр релаксації.

Критерій збіжності ітераційного методу використовується у вигляді:

(28)

де - характерний масштаб значення величини , або .

Для отримання однозначного розв'язування конкретної задачі окрім замкнутої системи вихідних рівнянь необхідно додавати граничні і початкові умови. В роботі обґрунтовані і сформульовані граничні умови на всіх границях розрахункової області, а також початкові умови для нестаціонарної задачі.

На основі чисельних методів реалізації дискретних аналогів розроблених моделей і рівнянь складений алгоритм рішення тривимірної задачі розвитку внутрішніх течій в анізотропному турбулентному потоці.

У четвертому розділі наводиться співставлення розрахункових та експериментальних даних, результати чисельного експерименту та практичні аспекти застосування запропонованих моделей та методів реалізації. Обґрунтовано метод та наведено методику експериментальних досліджень. Для обробки результатів експериментів по дослідженню утворення і розвитку внутрішніх течій в зоні штучного стиснення потоку розроблено пакет прикладних програм для побудови полів ізотах повздовжньої та поперечної складових осереднених швидкостей; поперечної та вертикальної складових внутрішніх течій; ізолінії функції току внутрішніх течій.

Проведений аналіз отриманих результатів експериментальних досліджень дозволяє зробити висновки: основний вторинний потік завжди напрямлений із зони з найвищими швидкостями у зони з найбільшим гальмуванням (до дна); при накладенні двох видів циркуляції за знаками вторинні потоки впливають як вирівнюючий фактор на розподіл швидкостей; розташування максимальних швидкостей нижче поверхні рівня води є наслідком впливу внутрішніх течій; максимальні значення швидкостей внутрішніх течій складають близько 15% від повздовжніх.

Складність проведення фізичних експериментів внаслідок відсутності відповідної бази та фінансових ресурсів видвигають перед науковцями розробки ефективних методів математичного моделювання. Для втілення цього типу моделювання необхідно досить чітко зробити калібровку моделей за допомогою розв'язування тестових задач та співставлення результатів розрахунків за моделями з наявними експериментальними даними. Застосування запропонованих математичних моделей дає можливість використовувати їх для дрібномасштабних моделей, які завжди мають місце за фізичного моделювання. Це обгрунтовується значними обсягами досліджень з цього питання закордоном, в країнах СНД та нашій країні. Тому були проведені чисельні розрахунки гідродинамічної структури експериментального потоку і були співставленні з результатами експериментів, що свідчить про досить добрий їх збіг. На рис. 3 наведено зміну відносної похибки розрахункових та експериментальних швидкостей . Наведені результати свідчать про адекватність розроблених математичних моделей та експериментальних даних.

Для дослідження основної характеристики анізотропного стану відкритого турбулентного потоку – тензора анізотропії проведено чисельний експеримент, фрагмент із якого наведено на рис. 4.

Характеристики

Тип файла
Документ
Размер
1,36 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее