24854 (654505), страница 2
Текст из файла (страница 2)
Ученые стали испытывать оливин в лабораториях. Кубики желто-зеленого минерала сдавливали и нагревали, снова нагревали и опять сдавливали. Очень подходил оливин под давлением по сейсмическим характеристикам к веществу мантии, но... При давлениях, соответствовавших глубине примерно четыреста километров, он разрушался. Значит, из него могла состоять только верхняя и частично средняя мантия. А что же входит в состав нижней?
Русский геофизик В.А. Магницкий и американский ученый Ф. Берч выдвинули гипотезу о том, что под действием гигантских давлений и температур сложные силикатные соединения (в том числе и оливин) распадаются на простые окислы кремния, магния, железа, но в более плотной упаковке.
В это было трудно поверить. Ведь кристаллическая решетка минералов - первооснова материи. Неужели простым давлением и повышением температуры можно ее изменить?..
В 1958 году австралийский ученый А. Рингвуд вместе со своими коллегами заключил образцы оливина в могучий пресс и, нагрев их до температуры примерно в тысячу градусов, сдавил до ста тысяч бар. Результат оказался удивительнейшим. Если рассмотреть кристаллик обычного оливина под электронным микроскопом, а потом построить модель упаковки его ионов кислорода, то получится ровная шестигранная призмочка. Примерно такая нарисована на рисунке. Но после опытов Рингвуда материал полностью перестраивался. Длинная призмочка с ионами кислорода в узлах превращалась в плотный приземистый кубик, соответствовавший кристаллической структуре твердой шпинели. Значит, прав был Берналл, говоря о возможности таких превращений, правы были Лодочников, Магницкий и Берч.
На одном из международных симпозиумов по геофизике, состоявшемся в 1963 году, советские специалисты показали зарубежным коллегам небольшие темные кристаллики непонятного вещества. Никто из геологов не мог определить, что это такое. Вроде бы кварц, а вместе с тем и не кварц. Очень уж плотен и тяжел. Оказалось, все-таки кварц, только побывавший в условиях сильного сжатия и высокой температуры. Его получили советские ученые С.М. Стишов и С.В. Попова в лаборатории Института физики высоких давлений. По имени одного из своих творцов новый минерал получил и название - стишовит.
Интересной оказалась находка стишовита в естественных условиях.
Американцы отыскали его в кратере Аризоны, где он образовался в момент мощного удара прилетевшего метеорита о Землю.
Получалось, что вещества, из которых сложены верхние слои мантии, могут составлять и нижние ее этажи. Но при этом кристаллы под действием высоких давлений и температур переходят из одного вида в другие.
Такие превращения, когда вещество из одного состояния переходит в другое, например вода переходит из пара в жидкость, а из жидкости в лед, называются фазовыми превращениями или фазовыми переходами. Эти переходы, по-видимому, играют очень большую роль и значение в процессах, происходящих в глубоких недрах. Они помогают сегодня ученым представить себе не только состав нижней мантии, но и ядра Земли.
Земля - современная модель
Что же лежит в основе современных представлений о внутреннем строении Земли? Как ни странно, но эти основы можно разделить по стародавнему обычаю на три группы - три «кита». Прежде всего представление о составе нашей планеты дает лава, вылившаяся из недр через жерла вулканов и трещины. В большинстве случаев она имеет базальтовый состав. И геологи так ее и называют - базальтовая лава. Кроме того, мы доподлинно знаем о существовании больших гранитных массивов в докембрийских толщах коры.
Второй «кит» тоже «вещественный». Это прилетающие к нам из космоса метеориты. Ведь по идее они должны быть из того же первичного вещества, из которого слепился и весь земной шар. Подавляющее большинство космических гостей состоит из плотной горной породы - темно-зеленого перидотита и из железа.
Наконец, третий «кит» - скачкообразное изменение скоростей распространения сейсмических волн внутри Земли. Оно позволяет предположить, что так же скачкообразно меняется и плотность вещества внутри нашей планеты, нарастая с глубиной.
Все это заставляет нас предположить, что внутреннее строение Земли очень сложно. А чтобы изучать сложные объекты, в науке уже давно пользуются приближенными моделями. То есть более или менее простыми и наглядными картинами, которые примерно соответствуют имеющимся знаниям.
В геофизике под моделью Земли понимают как бы разрез нашей планеты. На нем должно быть ясно видно, как меняются такие важные свойства земных недр, как плотность, давление, скорость распространения сейсмических волн, температура, ускорение силы тяжести, электропроводность и так далее.
Считается, что первые шаги в построении реальной модели внутреннего строения нашей планеты, с учетом всей имеющейся геофизической информации, накопленной за много лет, сделали американские геофизики Адамс и Вильямсон в 1923 году. Однако сейсмологи в те годы еще не могли дать достаточно точных значений для скоростей упругих колебаний. И потому работа американцев страдала многими неточностями.
Исправить недостатки и уточнить скорости взялись два крупнейших геофизика тридцатых годов. С одним из них мы уже встречались, когда разговор шел о гипотезах происхождения Земли. Это Гарольд Джефрис, профессор Кембриджского университета в Англии. Другой - Бено Гутенберг, немецкий ученый, эмигрировавший из фашистской Германии за океан.
Целых десять лет продолжалась их работа. Результаты, достигнутые Джефрисом и Гутенбергом, позволили австралийскому геофизику Буллену, стажировавшемуся у Джефриса, построить новую модель Земли, в которой он ввел удобное разделение на зоны.
И все-таки к началу пятидесятых годов классический период в геофизике, опиравшийся в основном на методы механики, закончился. В Советском Союзе и в США появились работы В.А. Магницкого и Ф. Берча, применивших для геофизических целей современные методы физики твердого тела и физики высоких давлений. Я уже рассказывал немного об их опытах и выводах. В результате была построена современная модель оболочки Земли, которая включает в себя литосферу и верхние слои мантии.
Вы можете ее увидеть на рисунке-графике с пояснительными надписями. Постарайтесь призвать на помощь свое воображение, чтобы за скромной линией графика увидеть сложность строения и буйство стихий внутри планеты. Конечно, я понимаю, что график не столь нагляден и не так красив, как гравюры прошлых веков. Но у него есть одно неоспоримое преимущество перед последними: он намного правдоподобнее. На приведенном рисунке вы видите сейсмическую модель Земли, то есть отображающую изменения плотности вещества недр. Но такие же модели можно построить и для других свойств планеты.
А теперь несколько слов объяснения. Прежде всего под жесткой корой - литосферой, плиты которой мы сравнивали с громадными льдинами-айсбергами, плавающими на «океане подкорового вещества», примерно с семидесятикилометровой глубины начинается новый, неизвестный слой. В нем скорость распространения сейсмических волн резко падает. Это - астеносфера. Кое-где местами в ней располагаются первичные магматические очаги вулканов. Там плавится и кипит базальтовая магма, которая потом по трещинам и вулканическим каналам поднимается на поверхность. Температура этих очагов очень близка к температуре плавления глубинного вещества мантии. И потому они увеличивают вязкость всего подкорового вещества.
Конечно, астеносферу можно назвать текучей лишь в сравнении с каменными монолитами. Невероятно медленно движется нечто, что составляет подкоровый слой, перетекая с места на место.
Вы, наверное, знакомы с варом - черной густой смолой, которая применяется в строительном деле. Вар легко колется на куски. Значит, он твердый. Но оставьте его на долгое время в покое - и кусок растечется лужей, которая будет так же колоться. Вещество астеносферы еще более вязкое, чем вар, но и оно способно перетекать из одного места в другое. Только очень медленно.
Примерно с двухсотпятидесятого километра глубины скорость распространения сейсмических волн снова начинает расти. Здесь уже давление в недрах так велико, что температура плавления сдавленного вещества повышается. Вещество мантии постепенно уплотняется, и скорости упругих колебаний в нем растут. Но растут медленно, будто накапливают силы. Потом вдруг резкий скачок! Ученые полагают, что здесь начинается зона фазовых переходов, о которых я вам тоже рассказывал. Здесь оливин превращается в более твердую шпинель.
И снова с глубиной идет плавное нарастание скоростей до зоны нового скачка - второй зоны фазовых переходов. Может быть, там происходит распад силикатов на окислы. Мы уже упоминали о стишовите, можно представить себе также уплотненные окислы и других элементов - железа, алюминия. А может быть, и наоборот, основные породообразующие минералы оболочки Земли переходят в более сложные структуры. Пока об этом ученые спорят. Но дальше, начиная с глубин в семьсот километров, скорости распространения сейсмических волн снова плавно нарастают под влиянием все увеличивающегося давления вышележащих слоев. И так происходит до самой границы с ядром Земли.
Ядро - это совсем особый вопрос и совершенно специфическая область земных недр.
О ядре и о наших современных представлениях о нем я хотел бы вам рассказать отдельно.
Из чего состоит ядро Земли
Идей о строении ядра Земли было высказано бесчисленное множество. Дмитрий Иванович Соколов - русский геолог и академик - говорил, что вещества внутри Земли распределяются, словно шлак и металл в плавильной печи.
Это образное сравнение не раз получало подтверждение. Ученые внимательно изучали прилетавшие из космоса железные метеориты, считая их осколками ядра распавшейся планеты. Значит, и у Земли ядро должно состоять из тяжелого железа, находящегося в расплавленном состоянии.
В 1922 году норвежский геохимик Виктор Мориц Гольдшмидт выдвинул идею общего расслоения вещества Земли еще в ту пору, когда вся планета находилась в жидком состоянии. Он это вывел по аналогии с металлургическим процессом, изученным на сталелитейных заводах. «В стадии жидкого расплава, - говорил он, - вещество Земли разделилось на три несмешивающихся жидкости - силикатную, сульфидную и металлическую. При дальнейшем остывании эти жидкости образовали главные оболочки Земли - кору, мантию и железное ядро!»
Однако ближе к нашему времени идея «горячего» происхождения нашей планеты все больше уступала «холодному» творению. И в 1939 году Лодочников предложил другую картину формирования недр Земли. К этому времени уже была известна идея фазовых переходов вещества. Лодочников предположил, что фазовые изменения вещества с увеличением глубины усиливаются, в результате чего вещество разделяется на оболочки. При этом ядро вовсе не обязательно должно быть железным. Оно может состоять из переуплотненных силикатных пород, находящихся в «металлическом» состоянии. Эта идея была подхвачена и развита в 1948 году финским ученым В. Рамзеем. Получалось, что хоть ядро Земли и имеет иное физическое состояние, чем мантия, но причин считать его состоящим именно из железа нет никаких. Ведь переуплотненный оливин мог быть столь же тяжелым, как и металл...
Так появились две исключающие друг друга гипотезы о составе ядра. Одна - развитая на основе идей Э. Вихерта о железо-никелевом сплаве с небольшими добавками легких элементов в качестве материала ядра Земли. И вторая - предложенная В.Н. Лодочниковым и развитая В. Рамзеем, гласящая о том, что состав ядра не отличается от состава мантии, но вещество в нем находится в особо плотном металлизированном состоянии.
Чтобы решить, в чью сторону должна склониться чаша весов, ученые многих стран ставили в лабораториях опыты и считали, считали, сравнивая результаты своих расчетов с тем, что показывали сейсмические исследования и лабораторные эксперименты.
В шестидесятых годах специалисты окончательно пришли к выводу: гипотеза металлизации силикатов, при давлениях и температурах, господствующих в ядре, не подтверждается! Более того, проделанные исследования убедительно доказывали, что в центре нашей планеты должно содержаться не меньше восьмидесяти процентов всего запаса железа... Значит, все-таки ядро Земли - железное? Железное, да не совсем. Чистый металл или чистый металлический сплав, сжатые в центре планеты, были бы слишком тяжелы для Земли. Следовательно, нужно предположить, что вещество внешнего ядра состоит из соединений железа с более легкими элементами - с кислородом, алюминием, кремнием или серой, которые больше всего распространены в земной коре. Но с какими из них конкретно? Это неизвестно.
И вот русский ученый Олег Георгиевич Сорохтин предпринял новое исследование. Попробуем проследить в упрощенном виде ход его рассуждений. Основываясь на последних достижениях геологической науки, советский ученый делает вывод, что в первый период образования Земля была скорее всего более или менее однородной. Все ее вещество примерно одинаково распределялось по всему объему.
Однако со временем более тяжелые элементы, например железо, стали опускаться, так сказать, «тонуть» в мантии, уходя все глубже к центру планеты. Если это так, то, сравнивая молодые и старые горные породы, можно в молодых ожидать меньшее содержание тяжелых элементов, того же железа, широко распространенного в веществе Земли.
Изучение древних лав подтвердило высказанное предположение. Однако чисто железным ядро Земли быть не может. Для этого оно слишком легкое.















