osobrazv (654433), страница 9
Текст из файла (страница 9)
тз — мощность тела, измеренная по скважине; а — зенитный угол скважины; В—угол падения рудного тела; у—угол между азимутом скважины и плоскостью нормального разреза рудного тела.
Горизонтальная тг и вертикальная тв мощности рудного тела определяются из следующих соотношений: тг=ти/sinA , тв=ти/ cosB
Поправка на отклонение скважины от нормали к простиранию рудного тела при малых углах отклонения очень незначительная, поэтому при вычислении истинной мощности ее рекомендуется вводить только тогда, когда азимут скважины отличается от азимута перпендикулярного разреза более чем на 30° .(при зенитных углах 5°). Аналогичные формулы следует использовать и при расчете мощности рудных тел в горных выработках, пересекающих рудное тело не по истинной мощности.
При подсчете запасов любым способом необходимо избегать «прессования» смежных рудных тел или ветвей в единый подсчетный контур. Оконтуривание и подсчет их запасов следует вести самостоятельно с раздельным определением соответствующих площадей (или мощностей) и содержаний полезных компонентов. Объемы рудных тел и отдельных подсчетных блоков вычисляются по общеизвестным геометрическим формулам.
Средняя объемная масса должна устанавливаться по данным замеров лабораторных образцов и выемкой целиков отдельно для каждого природного типа руд на достаточном фактическом материале.
Подсчет запасов ценных попутных компонентов производится в соответствии с требованиями СКЗ СССР .
Запасы попутных компонентов, имеющих промышленное значение, подсчитываются в контурах подсчета запасов основных компонентов и оцениваются по категориям в соответствии со степенью их изученности, характером распределения установленных форм нахождения и технологией извлечения.
Запасы попутных компонентов, накапливающихся при обогащении в товарных концентратах или продуктах металлургического передела, подсчитываются и учитываются как в недрах, так и в извлекаемых минералах и продуктах обогащения.
Заключение.
На протяжении всей истории человечества люди осваивали различные полезные ископаемые, особенно металлы. Семь из них, известных с древнейших времен – золото, серебро, медь, олово, железо, свинец и ртуть, - принято называть доисторическими.
Первыми ставшим известным человеку металлом было золото. Оно использовалось для изготовления украшений и монет. Затем люди стали использовать медь, роль которой в становлении человеческой культуры особенная. Из самородной меди были изготовлены первые металлические орудия труда, в результате век каменный сменился веком медным. Использование олова и получение бронзы привело к веку бронзовому. Затем наступил век железа, который длится и поныне.
По мере развития науки и техники, открытия новых элементов, создания сталей и сплавов используется все большее число металлов. В настоящее время в огромных масштабах осуществляется добыча руд железа, марганца, алюминия, меди, свинца, цинка, никеля и др. В современную эпоху научно-технической революции, в эпоху электроники, атомной энергетики, ядерной и космической техники также широко применяются радиоактивные и редкие металлы. Но перспективы их применения в будущем еще более грандиозны.
Огромная работа была проделана советскими геологами. Большой вклад в развитие науки о рудных месторождениях и создание надежной сырьевой базы металлов внесли академики В.А.Обручев, А.Е.Ферсман, С.С.Смирнов, А.Н.Заврицкий, А.Г.Бетехтин, Д.С.Коржинский, В.И.Смирнов.
В.М.Крейтер (1960 г.), а вслед за ним и В.И.Красников (1965 г.) под промышленными типами месторождений понимали такие естественные геолого-минералогические типы месторождений, при эксплуатации которых в сумме во всем мире извлекается несколько процентов данного вида полезного ископаемого.
За последние 20 лет промышленная систематика месторождений рассматривалась многими исследователями. Но наиболее удачно промышленные типы месторождений определены и систематезированны сотрудниками ВИЭМСа по железу, никелю, хромитам, свинцу и цинку, олову, вольфраму и другим металлам.
Систематика промышленных типов для многих металлов разработана недостаточно, и в дальнейшем её следует усовершенствовать. При разработке систематики необходимо исходить из того, что промышленными являются такие месторождения с балансовыми запасами, которые экономически целесообразно разрабатывать при современном состоянии техники и соответствующих технологий. Промышленный тип месторождений определяется прежде всего геологическими условиями залегания и морфологией рудных тел, минеральным и вещественным составом руд, от которых зависят методы отработки месторождений и технология получения металлов.
В зависимости от величины запасов металла месторождения делятся на крупные и уникальные, средние и мелкие. Мировая практика показывает, что крупные месторождения играют главную роль в разведанных запасах и добыче металлов. При проектируемых на ближайшее время масштабах добычи минерального сырья небольшие и средние по размерам запасов месторождения не смогут существенно влиять на состояние обеспеченности растущих потребностей промышленности. От масштабов месторождений зависит эффективность их разведки и разработки. Поэтому желательно, чтобы месторождения, открываемые и разведуемые в новых рудных районах, были крупными.
Качество руд должно соответствовать установленным требованиям по содержанию главного металла (кондиции) и допустимым содержанием вредных элементов. Необходимо учитывать также наличие в руде ценных элементов-примесей. Руды могут быть мономентальными и комплексными (двух-, трехметальными и т.д.). По содержанию основных компонентов среди них выделяются богатые, средние и бедные. Наиболее ценными являются руды богатые, из которых можно получит металл без обогащения. Однако в связи с ростом добычи металлов и совершенствованием технологической переработки все в больших масштабах добываются руды бедные.
Технология переработки руд определяется их минеральным и вещественным составом. Необходимо установит количественный минеральный состав руд и выявить основные и попутные компоненты, определить основные рудные минералы, изучить разновидности и генерации рудных минералов, отличающихся по составу и обогатимости. Необходимо также изучить пространственное распределение рудных минералов и составить минералого-технологические карты, сопоставить баланс распределения рудных элементов по минералам и выяснить формы вхождения их в состав руд, изучить гипергенные изменения руд и решить ряд других вопросов. Лишь после этого следует разрабатывать схему технологической переработки руд, которая должна предусматривать извлечение не только главных, но и попутных компонентов. В настоящее время из сульфидных медно-никелевых руд извлекается 10-15 элементов. Важно не только извлечь из руды все элементы, но извлечь их экономически выгодно.
Горно-геологические условия эксплуатации также должны обеспечить рентабельную и высокоэффективную отработку месторождений. Наиболее эффективна отработка месторождений открытым способом, удельный вес которой все более возрастает, особенно при добыче руд никеля. В сложной геологической или гидрогеологической обстановке даже крупные месторождения с высоким содержанием металлов оказываются недоступными для отработки. Однако при совершенствовании техники эти вопросы успешно решаются.
Географо-экономическое положение месторождений также в ряде случаев оказывает существенное влияние на их экономическую оценку. Промышленное месторождение никеля должно отвечать следующим требованиям: обладать крупными запасами, иметь руды вясокого качества, хорошо поддающиеся переработке, характеризоваться горно-геологическими условиями, доступными для эффективной отработки и находится в благоприятном геолого-географическом районе.
Однако с развитием науки и техники все эти требования не остаются постоянными, меняется и понятие о промышленных месторождениях. В отработку вовлекаются все новые месторождения, которые до недавнего времени считались непромышленными.
Список литературы
-
«Инструкция по применению классификации запасов к месторождениям никелевых руд», М: Госгеологтехиздат, 1961г.
-
А.И.Кривцов, И.З.Самонов и др. «Справочник по поискам и разведке месторождений полезных ископаемых», М: Недра, 1985г.
-
В.И.Смирнов, А.И.Гинзбург и др. «Курс рудных месторождений», М: Недра, 1986г.
-
П.Д.Яковлев «Промышленные типы рудных месторождений», М: Недра, 1986г.
-
Ф.И.Вольфсон, А.В.Дружинин «Главнейшие типы рудных месторождений», М: Недра, 1973г.
-
П.Д.Яковлев «Промышленные типы рудных месторождений», М: Недра, 1986г.
-
А.М.Быбочкин ( под редакцией) «Сборник руководящих материалов по геолого-экономической оценке месторождений полезных ископаемых. Том 1», М., 1985г.
-
И.Ф.Романович, И.А.Филатова и др. «Полезные ископаемые», М: Недра, 1992г.
-
В.И.Смирнов «Рудные месторождения СССР», М: Недра, 1978г.
Фактическая плотность сетей разведочных выработок, применявшихся на некоторых месторождениях никеля.
Таблица №3
Месторождение | Группа месторождений по степени сложности | Расстояния между пересечениями рудных тел выработками (в м) для категорий запасов | ||
| А | В | С1 | ||
Мощные пологопадающие пластообразные залежи сульфидных руд | ||||
| Талнахское: | ||||
| Врапленные руды | 1-я | 100Х100 | 200Х200 | 400Х(400-600) |
| Богатые руды | 2-я | 50Х100 | 100Х100 | |
| Норильское | 1-я | (50-100)х(50-100) | 200Х200 | (400-500-)Х(400-500) |
| Ниттис-Кумужья | 1-я | (250-300)Х250 | (500-600)Х(500-600) | |
Протяженные наклонные пласто- и линзообразные залежи сульфидных тел | ||||
| Ждановское | 2-я | 50Х50 | 100Х(100-200) | |
| Заполярное | 2-я | (25-50)Х(25-50) | (100-130)Х(100-150) | |
| Котсельваара-Каммикиви | 2-я | 50Х50 | 50Х(100-120) | |
| Семилетка | 2-я | 75Х50 | (100-150)Х(80-120) | |
Плащеобразные и линзовидные залежи силикатно-никелевых руд | ||||
| Бугеткольское | 2-я | 50Х50 | 100Х100 | |
| Покровское | 3-я | 25Х25 | 50Х50 | |
| Старо-Айдырлинское | 3-я | 20х30 | 40х40 | |
| Шелеинское | 3-я | 20Х40 | 40Х80 | |
Промышленные типы месторождений никеля.
| Промышленные типы | Форма и размеры рудных тел | Основные промышленные и минеральные типы руд | Среднее содержание никеля в рудах, % | Попутные компоненты – основные, обычно присутствующие (в скобках) | Ориентир. запасы в отдельных месторождениях | Доля в общих запасах кап. и развивающ странах, % | |
| Рядовые | Наиболее крупные | ||||||
| Медно-никелевый | Согласные пластообразные залежи, линзо- и жилообразные тела. Размеры: по простиранию до 1500м, по падению 800-1000м, мощность 0.9-100 м. | Медно-никелевый Петландит-халькопирит-кубанит-пирротиновый | Ni 0,5-1,5 Cu 0,2-3,5 | Co, S, Pt, (Pd, Os, Ir, Ru, Rh, Au, Ag, Se, Te) | 100-600 | До 2000 | 34,5 |
| Мышьяк-никель-кобальтовый (жильный) | Пучки и колонны жил, штокверкообразные зоны, линзообразные залежи; длина неск.десятков м, мощность неск. м. | Мышьяк-никель кобальтовый серебросодержащий Саффлорит-шмальтин-раммельсбергит-никелиновый | Co : Ni 4 : 1 до 1 : 4 | As, Ag, Bi, U | 20 | 100 | 0,1 |
| Никелевый коры выветривания | Изометрические и удлиненные пластообразные залежи, линзо-, кармано- и гнездообразные тела площадью от первых соте кв. метров до первых кв.км. при мощности 3-30 м. | Кобаль никелевый силикатный Серпентин-нитронитовый, керолит-гарниеритовый, гетит-нонтронит-гарниеритовый | Ni 0,7-1,3 Cо 0,04-0,2 | 20 | 1000 | 65,4 | |
| Никель-кобальтовый и железо-никелевый осадочный | Изометрические и удлиненные пласто-и линзообразные залежи площадью от первых соте кв. метров до первых кв.км. при мощности 0,5-30 м. | Никель-кобальтовый и железо-никелевый Нонтронит-лимонит-асболановый и гидрогётит-лептохлорит-магнетит-хромитовый | Ni 0,5 Cо 0,06 | ||||















