18613-1 (654338), страница 2

Файл №654338 18613-1 (Математические основания геоморфологии (по статье А.С. Девдариани)) 2 страница18613-1 (654338) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Образуем прямое произведение введенных в рассмотрение множеств:

(2)

Введем сокращенные обозначения:

; ,(3)

где — знак произведения множеств, m и n — индексы, которые могут принимать значения от 1 до k или l соответственно. Запись можно сделать еще более короткой, если множествам, входящим в произведение (2), дать единообразные обозначения: . В этих обозначениях будем иметь

,(4)

где Qu — любое из названных выше множеств. Образуем из этих множеств необходимое для дальнейших построений множество . Такое множество (в этом случае ), элементами которого являются опять-таки множества (в этом случае Qu), называют системой множеств.

Используя (3) и (4), можно написать

(5)

Прямое произведение множеств представляет собой, согласно определению, в данном случае множество векторов вида (p, t, m, g1, g2, …, gk, b1, b2, …, bl). Каждый из этих векторов описывает состояние, которое, вообще говоря, может принять некоторая точка рельефа в некоторый момент времени, находясь под воздействием определенного сочетания рельефообразующих факторов. Множество этих векторов будем называть пространством W возможных состояний рельефа1. Как было сказано выше, это пространство можно рассматривать в качестве объекта изучения геоморфологии в том широком понимании, какой придается ему в настоящее время.

В геоморфологии изучаются как сами множества, из которых построено пространство W, так и отношения на этих множествах. Особенно важным представляется изучение отношений

(6)

соответствия между подпространствами (область определения соответствия) и (область значений соответствия) пространства состояний, поскольку отношения соответствия описывают связи между явлениями. В соответствии (6), во-первых, и , т.е. множества и , входящие в области определения и значений соответствия, выбираются соответственно из подсистем и системы множеств, из которых строится пространство W возможных состояний; во-вторых, , т.е. одно и то же множество не может входить и в область определения, и в область значений соответствия; в-третьих, , т.е. соответствие (6) может быть задано не на всех, а только на некоторых множествах из системы . Геоморфологический смысл, который может быть вложен в соответствия вида (6), станет понятным из приводимых в дальнейшем примеров.

Система множеств , из которых строится пространство W, может включать, в зависимости от решаемых задач, те или иные из введенных в рассмотрение множеств. Однако, чтобы не потерялись объекты изучения геоморфологии, в построении пространства W должны участвовать либо множество M материальных точек рельефа, либо хотя бы одно из множеств Gm, на которых принимают значения геометрические характеристики рельефа. В символах математической логики это условие запишется так:

,(7)

Здесь (перевернутая буква Е) — квантор существования, читаемый как «существует хотя бы один», — логический союз «или» разделительное, требующий выполнения одного, и только одного из связываемых им высказываний. В целом, условие (7) читается как «существует хотя бы одно такое множество Qu (входящее в систему множеств, из которых строится пространство состояний W), которое удовлетворяет высказыванию, заключенному в квадратные скобки, представляя собой либо множество M, либо множество Gm».

Множества Gm могут входить как в область значений, так и в область определения соответствия (6). Пусть мы имеем условие:

(8)

Здесь (перевернутая буква А) — квантор общности, имеющий смысл слова «все». Выражение (8) читается как «все множества должны представлять собой только множества Gm», т.е. областью значений соответствия (6) при соблюдении условия (8) могут быть только те множества, на которых принимают значения геометрические характеристики рельефа. Множества, на которых принимают значения рельефообразующие факторы, элементы пространства и времени, могут входить только в область определения соответствия (6). Иначе говоря, соответствиями, удовлетворяющими условию (8), выражаются зависимости очертаний рельефа от местоположения, времени, рельефообразующих факторов, а также взаимосвязи геометрических характеристик рельефа. Ясно, что установление такого рода соответствий относится к задачам геоморфологии, сюда же отнесем соответствия, удовлетворяющие приводимому ниже условию (10).

В других случаях геометрические характеристики рельефа могут входить в область определения соответствия (6), определяя собой либо значения геологических, гидрологических, биогеографических и прочих факторов, которые в задачах, удовлетворяющих условию (8), рассматривались как рельефообразующие, либо (в геохронологических исследованиях) время. Этим случаям отвечает условие:

,(9)

где — логический союз «и», означающий, что должны выполняться оба связываемые им высказывания. Примерами задач такого рода могут служить: установление зависимости характеристик потока от формы ложа, дешифрование геологического строения по очертаниям рельефа, измерение времени скоростью денудации. Отнесение такого рода задач к геоморфологии или к смежным к ней наукам в той или иной мере условно. Те из задач, которые можно отнести к геоморфологии, мы будем называть ее пограничными задачами. Таким образом, условие (9) является необходимым, но недостаточным точно так же, впрочем, как и условие (8), которому могут удовлетворять пограничные задачи смежных с геоморфологией наук.

В построении пространства состояний рельефа непременно, в явном или неявном виде, должно участвовать множество T элементов времени t. В неявном виде, принимая значения на одноэлементном множестве, оно присутствует, когда изучается состояние рельефа в фиксированный, современный или прошлый момент или промежуток времени. В таких случаях среди рассматриваемого множества элементов времени любые два элемента и совпадают: . Явно время вводится при изучении развития рельефа. При этом мы, очевидно, должны иметь условие, противоположное предыдущему, а именно: .

В пределах внутренних задач геоморфологии, определяемых условием (8), а также приводимым ниже условием (10), можно либо не учитывать, либо учитывать рельефообразующие факторы. В первом случае имеет место условие , во втором . Здесь — знак логического отрицания «не», который, будучи поставлен перед квантором существования , отрицает его, так что означает «не существует».

Накладывая на пространство (5) и соответствия (6) приведенные условия, можно поставить основные задачи геоморфологии и выделить разделы науки, в которых они решаются.

В пределах внутренних задач геоморфологии, т.е. при выполнении условий (8) или (10), логическое обоснование получают четыре раздела геоморфологии — геометрия, статика, кинематика и динамика рельефа, ранее выделявшиеся интуитивно (Девдариани, 1966).

Геометрия рельефа:

.

Изучаются очертания рельефа в фиксированный момент или промежуток времени. Наиболее часто встречающейся задачей геометрии рельефа является установление соответствий вида , где под P понимается двумерное (карта) или одномерное (профиль) евклидово пространство. В частности, обозначив координаты точки земной поверхности в трехмерном пространстве , и положив , получим соответствие , под которым с одинаковым правом можно понимать и карту в горизонталях, и аппроксимирующую ее функцию .

Другая задача геометрии рельефа состоит в установлении зависимостей между различными геометрическими характеристиками рельефа, т.е. соответствий вида . Примером такого соответствия, сформулированного в качественной форме, может служить утверждение, что с возрастанием высоты (принимающей значения на упорядоченном множестве G1) уклоны (принимающие значения на упорядоченном множестве G2) преимущественно (это слово указывает на неоднозначность соответствия, его вероятностный характер) возрастают.

Статика рельефа: .

Изучаются зависимости очертаний рельефа от рельефообразующих факторов в фиксированный момент или промежуток времени. Очевидно, что такие зависимости имеют геоморфологический смысл, если рельеф достиг устойчивого равновесия (например, предельного профиля) и более не изменяется во времени.

Кинематика рельефа: .

Изучаются изменения состояния рельефа во времени вне зависимости от вызывающих эти изменения рельефообразующих факторов. При этом могут использоваться два метода описания движения: а) Локальный метод, когда объектами наблюдения служат элементы p физического пространства (например, точки на карте), в которых с течением времени t изменяются геометрические характеристики рельефа g1, g2, …, gk. Соответствие (6) получает вид

.(10)

Здесь знак обозначает логическое отношение эквивалентности, смысл которого состоит в том, что первое высказывание, утверждающее присутствие в области определения соответствия (6) множества M, требует осуществления второго высказывания, гласящего, что областью значений соответствия является только множество P, и наоборот. Выражение (10) является упоминавшимся выше вторым наряду с (8) условием, определяющим внутренние задачи геоморфологии.

Динамика рельефа: .

Изучается развитие рельефа при активном или пассивном воздействии рельефообразующих факторов. Примером в терминах континуальной математики может служить уравнение развития продольного профиля реки: , где H — высота точки профиля, A — постоянная, зависящая от его начальных очертаний; они представляют собой геометрические характеристики рельефа, принимающие значения на множествах G1 и G2 соответственно; t — время, принимающее значения на множестве T; F(x) — функция расстояния x, принимающего значения в одномерном евклидовом пространстве P; m — постоянная, зависящая от рельефообразующих факторов, принимающих значения на множествах B1, B2, …, Bl; e — основание натуральных логарифмов. Все перечисленные характеристики принимают значения из множества действительных чисел, и приведенное уравнение представляет собой конкретную форму функционального соответствия в многомерном евклидовом пространстве состояний

Характеристики

Тип файла
Документ
Размер
1 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее