73208-1 (652805), страница 2
Текст из файла (страница 2)
Но кто будет переделывать те прошлые результаты “анализов” сотен тысяч костей и пород?
Раньше меня умиляла такая вещь: когда спрашивали у геологов, к какому возрасту принадлежит этот слой грунта, он отвечал – 50-60 млн. лет назад. Когда его спрашивали почему? - тот отвечал:
- Потому что в этом слое были найдены ископаемые останки, которым 50-60 млн. лет.
А когда спрашивали у археолога, к какому возрасту принадлежит эти ископаемые останки животных, он отвечал – 50-60 млн. лет назад. Когда его спрашивали почему? - тот отвечал:
- Потому что эти ископаемые останки были найдены в слое грунта, которому 50-60 млн. лет.
К счастью от этой практики отошли, но переделывать результаты прошлых датировок так и не стали. И вся Теория Эволюции, в несостоятельности которой я уже давно убедился, не прибегая к анализу ископаемых останков, а, базируясь сугубо на законах генетики, была состряпана на такого рода определении возрастов по принципу: “какой удобно, такой и ставим”.
Но вернемся к современным методам анализа возраста.
Более тщательное и дотошное определение возраста породы или останков – дело серьезное.
Для пород и останков, которым менее 100000 лет, хорошо применим радиоуглеродный метод. Он позволяет довольно точно (но как было подмечено в [1] с погрешностями в 10-15%) определять возраст. Другое дело, если выясняется, что возраст более 100000 лет.
Тогда в дело вступают уже другие методы исследований.
Вот на них и их надежности мы и остановимся более подробно.
Когда находят множество образцов, явно принадлежащих одной эпохе (останки животных, растений, породы), не возникает сомнений в итоге применения того или иного изотопного метода определения возраста. Там все уравновешивает общая оценка.
Но часто находят единичные образцы и иногда даже вне всяких слоев. Например, множество костей динозавров находили буквально в поверхностных песках Сахары.
Как определить истинный возраст, если сравнивать не с чем?
Очевидно, в этом случае придется ставить абсолютный возраст останков.
Для этого применяют различные методы, а чаще всего несколько сразу, потому что часто под влиянием всевозможных причин, возникавших в историческом прошлом, отдельные химические элементы, а иногда и целые семейства в останках, которые служат маркерами оценки времени, покидают решетку материнского минерала или костей. Это явление носит название миграции элементов.
Она тем чаще встречается, чем более изолированным находят останки. Пока эти останки проделали весь свой временной путь, покинув однажды слой грунта, где изначально были похоронены, их атомарный состав уже перемешался настолько с другими элементами, воздействующими на них во времени, что возраст этой породы или останков может плясать десятками и даже сотнями миллионов лет.
Например, если формирующийся минерал в силу каких-то причин захватит избыточный аргон или потеряет некоторое количество калия, соотношение этих радиоизотопов увеличивается. Это создаст впечатление, будто бы данная порода старше по возрасту, нежели в действительности.
Потеря и смешивание химических элементов может быть вызвано множествами причин: кристалло-химическими особенностями самих пород, прочностью их структур, внешними воздействиями (температуры, среды, давления и пр. сил).
Поэтому для оценки возраста таких минералов применяют 2-3 метода сразу.
Рассмотрим их.
Свинцово-изотопный метод более точен перед аргоновым и стронциевым, поскольку с его помощью возраст определяется по четырем парам отношений: свинец-206/уран-238, свинец-207/уран-235, свинец-207/свинец-206 и свинец-208/торий-232.
Но миграция элементов часто искажает картину. И когда видно, что из четырех пар соотношений 2 показывают один результат, а две – другой, понимают, что нужно прибегать к иному методу.
Однако эти оценки хороши только при анализе образцов, возраст которых старше 600 млн. лет, так как в более молодых породах свинцовое соотношение измеряется очень неточно. Тогда применяют оценки по другим изотопам: свинец-206/уран-238, свинец-207/уран-235, свинец-208/тории-232
Самое трудное – это когда породы и ископаемые останки подверглись воздействию вулканических пород, причем их атомарная структура изменена нагревом и проникающими растворами. В подобных обстоятельствах прибегают к определению возраста разных компонентов породы, каждый своим методом: акцессорных минералов - свинцово-изотопным, первичных амфиболов - аргоновым, реликтовых слюд - стронциевым.
Например, калий-аргоновый метод считается хорошо применимым для датирования магматических, метаморфических, а иногда и осадочных пород. Но он хорош только для какого-либо одного типа минерала.
Углубляться в разнообразие современных методов анализа можно долго.
Поэтому лучше сразу пойти к истокам их абсолютной привязки.
К точке отсчета
Каждый метод строится на периоде распада того или иного изотопа.
Возьмем, к примеру, кальциевый метод. Радиогенный изотоп кальция-40 образуется в результате бета-распада калия-40: 40К + е - 40Ca + .
Соотношение количества этих двух изотопов в минерале и принимается в качестве показателя их возраста (с поправками на скорость электронного захвата и бета-распада калия).
По сути, все изотопные методы построены на подобном принципе определения возраста.
Возникает вопрос – какова скорость распада изотопов?
Вроде бы ответ сам собой разумеющийся и очевидный, и цифры со значением ответа также ясно видны на схеме, где приведен для каждого изотопа радиоактивного семейства урана-235 период полураспада.
Но насколько точны эти цифры и как получены?
Ведь их получили не сами исследователи возраста, а физики. А у физиков свои точности.
Физика атома может дать точно ответ на вопрос о том, каков период полураспада тех химических элементов и их изотопов, у которых она короткая по времени.
Из того же рисунка видно, что у 211Pb она составляет 36,1 минуты. У 223Fr она составляет 22 минуты. Это все понятно. Чтобы подсчитать это время достаточно проверить распад на практике.
У изотопа 227Ас период полураспада уже 21,6 лет. Не думаю, чтобы кто-нибудь проверял это время, ожидая распада изотопа. Просто смоделировали скорость распада наперед и подсчитали распад максимум на 1 год. Такая оценка уже менее точная, чем предыдущие, но все же точна, поскольку берется выборка из 5-10% времени всего полураспада.
Ну а с какой точностью известно про период полураспада 235U? Он значится в 710 млн. лет. Откуда эти цифры и такая точность? Вот тут я бы сказал, что точность лишняя, ведь оценка периода полураспада строится на тех же теориях и обычном моделировании, где никто не проверял все 710 млн. лет и даже не брал выборку по 5-10% времени от распада, а использовали в лучшем случае лишь 1/710х106 из всех результатов, чтобы сделать якобы “абсолютное” заключение о времени полураспада этого изотопа. То есть, это все теория, что полураспад урана-235 составляет 710 млн. лет. Никто этого не проверял на практике.
Но на этом предположении, основанном на выборке ничтожной долевой процентной части результатов и которое было выведено сугубо математически, с какой-то точностью, построили целую систему подсчета, в которую ошибки определения периода полураспада не заложили.
А если скорость распада меняется из года в год, из миллиона в миллион лет? А если на нее действует смена магнитных полюсов Земли, происходившая сотни раз? А если действуют нагрев и давление при попадании в вулканические породы?
Этих “если” можно привести довольно много, если захотеть поискать.
Давайте пошутим.
Теория Математической Обработки Измерений определяет расчет точности величины, прямое измерение которой невозможно, следующим образом:
Производится однократное дифференцирование формул, характеризующих данную величину. Погрешности при этом соответствует дифференциал, а относительной ошибке - выражение dt/t. Каждый член уравнения с первыми производными складывается независимо от знака перед ним с предыдущим.
Теперь осуществим расчет этой ошибки для уравнения радиоактивного распада элемента N:
N = N0×exp(-L×t),
где постоянная радиоактивного распада L = ln2/t, а t – период полураспада.
Конечная формула ошибки получится такой:
dt/t = (2t/T)×(dN/N),
где dt/t - относительная ошибка определения периода полураспада элемента, dN/N - относительная ошибка определения числа атомов в испытуемом образце, T – продолжительность испытания.
Взяв для примера dN/N = 0.001, а 2t/T = 10000 (для годовых наблюдений элемента, период полураспада которого прогнозируется на уровне 5000 лет), получим dt/t = 10, что соответствует 1000%.
Нетрудно прикинуть, что увеличение числа испытаний в 100 раз увеличит точность измерений только в 10 раз. Но увеличение времени измерений неизбежно натолкнется на предел точности, определяемый наличием систематических ошибок и иных факторов. Повысить же точность до 0.1%, при сохранении остальных параметров данного примера, можно при проведении 100 млн. испытаний с подсчетом количества распадов для каждого элемента в течение 1 года.
Все это не реально, как и кажущаяся погрешность в 1000%.
Конечно не все так плохо обстоит.
На самом деле в физике используется некое положение, ставшее аксиомой, согласно которому изменение количества атомов изотопа в образце обусловлено только и исключительно их распадом. То есть, считается, что если за время эксперимента произошло Х распадов, то именно на Х и уменьшилось количество атомов изотопа в образце, или dN=Х.
Тогда ошибка примет цивильный вид, вполне укладывающийся в сносную погрешность измерений. Но опять таки - это будет чистой воды теория, основанная на предположении, что изменение количества атомов изотопа в образце обусловлено только и исключительно их распадом, что на практике еще никто не доказал.
Безусловно львиная доля истины в этой аксиоме есть, но где гарантии, что она справедлива на элементы с большими периодами распада? Как доказать, что скорость распада постоянна во времени и одинакова для всех элементов? Это недоказуемо на практике, только в теории.
Таким образом, вывод о точности изотопных методов оценки возраста хорош лишь как относительный, но не абсолютный. Если в реальности через лет 50 вдруг окажется, что период полураспада 235U не 710 млн. лет, а допустим 665 или все 890, то написанную за наше время геохронологию можно смело выбрасывать на свалку и переписывать все.
Поэтому лучшим сегодня было бы не строить иллюзий относительно точности того или иного метода, а искать новые, более точные, причем абсолютные, а не те, которые сами опираются на другие результаты, с сомнительной достоверностью. В противном случае нас это заведет очень далеко от истины.
Список литературы
Андрей Скляров “Чего изволите-с?.. Меню радиоуглеродного датирования и дендрохронологии”
А. Н. Олейников “ГЕОЛОГИЧЕСКИЕ ЧАСЫ”, Издание третье, переработанное и дополненное, - Л.: Недра, 1987.
Для подготовки данной работы были использованы материалы с сайта http://www.sciteclibrary.ru















