13245 (648048), страница 2
Текст из файла (страница 2)
По мнению Seifritz, наиболее вероятным физическим фактором, с которым связана большая токсичность тяжелых металлов, является электроотрицательность: она может влиять на легкость взаимодействия металла с протоплазмой. В периодической системе элементов электроотрицательность, в общем, увеличивается слева направо в каждом периоде; таким образом, подтверждается общая тенденция к увеличению ядовитости с увеличением атомного веса. Но, по мнению Seifritz, нельзя выделить одно доминирующее свойство, не учитывая влияния других и их взаимную связь.
Возможно, отдельные характеристики свойств металлов связаны с их токсическим действием разными путями. Например, с селективностью или большим сродством к отдельным химическим группам, таким, как способность многих металлов образовывать ковалентные связи с атомом серы. Это может определить механизм действия.
Однако при достаточной дозе введенного металла большое количество катионов поступает в циркуляцию и распределяется по всему организму, вступает в контакт со всеми тканями, нарушая их нормальную функцию, чем обуславливается токсический и летальный эффект. При этом большое значение может иметь как быстрота, так и прочность образующихся в биологических средах комплексов металлов с такими биологически важными образованиями, как белки, ферменты, субстраты клеточных оболочек. Токсичность тяжелых металлов связана, в частности, с тем, что они блокируют активные центры ферментов и выключают их из управления метаболизмом. Общетоксическое действие металлов может быть связано с неспецифическим торможением ряда ферментов в силу денатурации белков вообще. Но ряду металлов в то же время свойственно специфическое угнетение определенных ферментов уже в очень малых концентрациях. Поэтому особенности отравления отдельными металлами выявляются преимущественно при длительном контакте с ними.
В нашей стране разработаны ПДК некоторых тяжелых металлов в продукции растениеводства (институт питания РАН, 1986):
| Продукт | Предельно допустимые концентрации в продуктах питания (мг/кг) | ||||||||
| Хром | Ни-кель | Медь | Цинк | Кад-мий | Оло-во | Ртуть | Сви-нец | Сурь-ма | |
| Зерно | 0,2 | 0,5 | 10,0 | 50,0 | 0,03 | - | 0,03 | 0,3 | 0,1 |
| Крупа | 0,2 | 0,5 | 10,0 | 50,0 | 0,10 | - | 0,03 | 0,3 | 0,1 |
| Мука | 0,2 | 0,5 | 10,0 | 50,0 | 0,10 | - | 0,02 | 0,3 | 0,1 |
| Крахмал | 0,2 | 0,5 | - | 30,0 | - | - | 0,02 | - | 0,1 |
| Овощи свежие | 0,2 | 0,5 | 5,0 | 10,0 | 0,03 | - | 0,02 | 0,5 | 0,3 |
| Овощи консерв. | 0,2 | 0,5 | 5,0 | 10,0 | 0,03 | 200 | 0,02 | 0,5 | 0,3 |
| Фрукты свежие | 0,2 | 0,5 | 5,0 | 10,0 | 0,03 | - | 0,02 | 0,4 | 0,3 |
| Фрукты консерв. | 0,2 | 0,5 | 5,0 | 10,0 | 0,03 | 200 | 0,02 | 0,4 | 0,3 |
| Ягоды свежие | - | 0,5 | 5,0 | 10,0 | 0,03 | - | 0,02 | 0,4 | 0,3 |
| Ягоды консерв. | - | 0,5 | 5,0 | 10,0 | 0,03 | 200 | 0,02 | 0,4 | 0,3 |
| Грибы свежие | - | 0,5 | - | - | - | - | 0,05 | 0,5 | - |
| хлеб | 0,2 | - | 10,0 | 50,0 | - | - | 0,02 | 0,3 | 0,1 |
ТОКСИЧНОСТЬ ТЯЖЕЛЫХ МЕТАЛЛОВ В ОРГАНИЗМЕ ЧЕЛОВЕКА И ЖИВОТНЫХ
Токсичность – это мера несовместимости вредного вещества с жизнью. Степень токсического эффекта зависит от биологических особенностей пола, возраста и индивидуальной чувствительности организма; строения и физико-химических свойств яда; количества попавшего в организм вещества; факторов внешней среды (температура, атмосферное давление).
Понятие об экологической патологии.
Возросшая нагрузка на организм, обусловленная широким производством вредных для человека химических продуктов, попадающих в окружающую среду, изменила иммунобиологическую реактивность жителей городов, включая детское население. Это приводит к расстройствам основных регуляторных систем организма, способствуя массовому росту заболеваемости, генетическим нарушениям и другим изменениям, объединенных понятием - экологическая патология.
В условиях экологического неблагополучия раньше других систем реагируют иммунная, эндокринная и центральная нервная системы, вызывая широкий спектр функциональных расстройств. Затем появляются нарушения обмена веществ и запускаются механизмы формирования экозависимого патологического процесса.
Среди ксенобиотиков важное место занимают тяжелые металлы и их соли, которые в больших количествах выбрасываются в окружающую среду. К ним относятся известные токсичные микроэлементы (свинец, кадмий, хром, ртуть, алюминий и др.) и эссенциальные микроэлементы (железо, цинк, медь, марганец и др.), также имеющие свой токсический диапазон.
Основным путем поступления тяжелых металлов в организм является желудочно-кишечный тракт, который наиболее уязвим к действию техногенных экотоксикантов.
Спектр экологических воздействий на молекулярном, тканевом, клеточном и системном уровнях во многом зависит от концентрации и длительности экспозиции токсического вещества, комбинации его с другими факторами, предшествующего состояния здоровья человека и его иммунологической реактивности. Большое значение имеет генетически обусловленная чувствительность к влиянию тех или иных ксенобиотиков. Несмотря на разнообразие вредных веществ, существуют единые механизмы их воздействия на организм, как у взрослого человека, так и у ребенка.
Отравления соединениями тяжелых металлов известны с древних времен. Упоминание об отравлениях «живым серебром» (сулема) встречается в IV веке. В середине века сулема и мышьяк были наиболее распространенными неорганическими ядами, которые использовались с криминальной целью в политической борьбе и в быту. Отравления соединениями тяжелых металлов часто встречались в нашей стране: в 1924-1925 гг. Было зарегистрировано 963 смертельных исхода от отравлений сулемой. Отравления соединениями меди преобладают в районах садоводства и виноделия, где для борьбы с вредителями используется медный купорос. В последние годы наиболее распространены отравления ртутью. Нередки случаи массовых отравлений, например, гранозаном после употребления семян подсолнечника, обработанного этим средством.
Всасывание, транспорт и распределение металлов.
Для токсического действия необходим контакт яда с биологическим субстратом – объектом этого действия. Контакт может осуществляться при циркуляции яда во всех жидких средах организма (крови, ликворе, межтканевой жидкости и т.п.), а также при непосредственном соприкосновении с оболочками клеток, цитоплазмой и её составными элементами.
В силу этого в токсическом действии металлов, как и других ядов, большое значение имеют их транспорт, распределение, концентрация в месте действия, метаболизм, скорость и пути выделения. Вопросы метаболизма ядов, имеющие большое значение для понимания действия органических веществ, мало изучены в отношении металлов. Однако некоторые данные о превращении металлов в живом организме все же имеются. Известны происходящие в организме восстановительные процессы, при которых металлы и неметаллы из состояния высшей валентности переходят в состояние низшей валентности. Это установлено для железа, марганца, молибдена, ванадия, хрома, мышьяка.
Концентрация металлов в месте действия, как и вообще любых ядов или фармакологических средств, является результатом динамических процессов всасывания из места поступления, проникания в жидкие среды, транспорта, распределения в органах и тканях, химических превращений в последних и процессов выведения из организма.
Резорбция и распределение, а также выделение металлов, как и вообще экзогенных ядов, в конечном итоге схематически представляют как ряд процессов распределения между внешней средой и биосредами. В свою очередь в биосредах - организмах - происходит перераспределение между фазами: кровью и тканевыми и межклеточными жидкостями, между последними и клетками, между внутриклеточными структурами.
Для осуществления непосредственного контакта любого яда с тканями, клетками, рецепторами и т.д. ему приходится проникать через множество пограничных поверхностей – биологических мембран. Роль последних играет кожа, слизистая желудочно-кишечного тракта, эндотелии сосудов, альвеолярный эпителий, вообще гистогематические барьеры, оболочка клеток, внутриклеточных структур и т.д. По современным представлениям биологические мембраны имеют белково-липидную структуру. Клеточные мембраны представляют самостоятельный структурный элемент, активно участвующий в процессах обмена веществ. Мембраны рассматриваются как биологические, динамические структуры, содержащие ряд важных энзимных систем. Повреждения, вызываемые ядами, нарушающими функции энзимов, приводят к изменению проницаемости транспорта через эти оболочки.
Поверхность клеточных оболочек несет отрицательный заряд, что показано на примере эритроцитов, сперматозоидов, многих бактерий; но в тоже время на отдельных участках заряд может меняться. Ионы, достигнув поверхности клетки, либо фиксируются на ней, либо отталкиваются в силу одноименности заряда. Например, полагают, что анионы проходят эритроциты через положительно заряженные поры; положительно заряженные ионы не могут проникнуть через них, с чем связана плохая проницаемость эритроцитов (и других клеток) для катионов. Одни анионы (хлор, бром) проникают в эритроциты почти мгновенно, но ряд других более сложных (например, JO3, селеновая кислота) накапливаются в эритроцитах очень медленно.
Схематически транспорт веществ через пограничные поверхности можно разделить на:
а) поступление веществ в клетки путем диффузии через водные и липидные барьеры;
б) вода и растворенные в ней вещества как бы фильтруются в клетки (вступают в силу гидродинамические и осмотические законы);
в) перенос липоидонерастворимых веществ объясняется образованием их соединений с компонентами мембраны. Например, полагают, что двухвалентные металлы проникают через пограничные мембраны в виде фосфатных комплексов.















