11895 (647292), страница 2
Текст из файла (страница 2)
Обменные процессы, идущие в биосфере между живой и неживой природой, отличаются исключительной интенсивностью, масштабностью и носят глобальный характер. По сути дела все вещество неживой природы в пределах биосферы принимает в них участие, так или иначе проходя через тела организмов, населяющих ее. Поэтому роль организмов в перемещении и перераспределении вещества по земной поверхности очень велика. Она вполне сопоставима с геологическими факторами, а по некоторым параметрам даже превосходит их. Некоторое представление о геологической роли живого вещества дают, например, такие факты. В живом веществе в непрерывном круговороте находится не менее 1012—1013 т кальция, что составляет заметную часть всего кальция земной коры около 7*1017 т, а что касается азота, то "главная масса азотных соединений на Земле находится в виде тел живого вещества". Живое вещество в течение года перемещает массу газов, которая в несколько раз превосходит вес всей атмосферы. Такого важного для построения живого тела элемента, как углерод, через организмы перемещается в течение 13 лет в 10 раз больше, чем его содержится во всей земной коре.
В свете данных о геологической роли организмов на планете живое вещество предстает не как случайное явление, а как важная часть целостной системы, функционально подчиненная ей и обеспечивающая ее целостность в качественно новом состоянии.
Таким образом, идея о биосфере возникла на основе осознания глобальной функции организмов на нашей планете. Новое понятие потребовалось для того, чтобы отразить в теории качественно новое состояние земной поверхности, обусловленное деятельностью живого вещества.
Как организм не может быть понят вне единства с неживой природой, так и неживая природа в пределах биосферы не может быть понята достаточно полно без учета воздействия на нее со стороны организмов. По сути дела это общее методологическое требование системного подхода: часть не может быть понята в ее структурном и функциональном аспектах без соотнесения с другими частями целостной системы. Если живая и неживая природа представляют собой части целостной системы, то они могут быть поняты только путем соотнесения друг с другом и с целым, частями которого они являются.
Системный подход к изучению биосферы позволяет глубже понять многие процессы на земной поверхности, не поддававшиеся раньше научному объяснению. Особенно это касается проблем распределения вещества по поверхности Земли и проблем источников энергии, необходимой для движения вещества. Удалось, например, понять причины возникновения месторождений многих видов полезных ископаемых и разработать важные методы их поиска по биологическим признакам (работы А.Е.Ферсмана, В.В.Ковальского). Академик А.П.Виноградов положил начало теории биогеохимических провинций, которая оказалась очень важной не только для совершенствования этих методов, но и для понимания причин эндемий, т.е. заболеваний, возникающих из-за недостатка или избытка некоторых микроэлементов в окружающей среде.
Системный подход позволил верно оценить исключительную роль живого вещества как источника энергии процессов не только в живой, но и в значительной части неживой природы. Особенно велика в этом отношении роль зеленых растений — единственных автотрофов на нашей планете. Они перехватывают энергию солнечного луча и трансформируют ее в энергию связи органических соединений. В этой форме энергия Солнца становится доступной всем остальным организмам, передаваясь по цепям питания и размножения. Ежегодно деятельностью всех фотосинтетиков нашей планеты связывается энергия в количестве 1018 Дж. — величина, вполне сопоставимая с кинетической энергией геологических процессов на поверхности Земли, которая равна 1024 Дж. Но энергетическая функция живого вещества не сводится только к количественному аспекту. Главное в том, что деятельностью растений в процессе питания высвобождается кислород, за счет которого идут все реакции окисления. По мнению В.И.Вернадского, химизм нашей планеты обусловлен в основном организмами. С появлением жизни реакции окисления на Земле пошли во много крат быстрее, чем в абиотических условиях, и в этом состоит особое значение энергетической функции живого вещества. В.И.Вернадский связал учение о биосфере с концепцией подвижности земных слоев, продолжив тем самым в геологической науке идею развития. Он предположил, что в геологически длительное время верхние слои биосферы, обогащенные энергией живого вещества, постепенно опускаются в магматическую область и там расплавляются под воздействием высокой температуры и давления, отдавая избыточную энергию земным недрам. Впоследствии эта гипотеза получила экспериментальное подтверждение в трудах В.И.Лебедева и Н.В.Белова.
Учение о биосфере дало толчок дальнейшему развитию биологии, и, в частности, такому ее разделу, как экология, поскольку окружающая организмы среда предстала в более значительном и динамичном для живого плане, чем раньше. Возросло внимание биологов к надорганизменным уровням организации живого, организм стали рассматривать не как самодовлеющую величину, а как часть более сложного целого — популяции, биоценоза и биосферы в целом. Можно вполне согласиться с проф. К.М.Завадским, который считал важнейшей чертой нового способа мышления в биологии "отказ от признания организма единственно реальной и первичной формой организации живого". Здесь же он отметил, что "идею первичности не одной формы существования жизни, а сразу нескольких впервые обосновал В.И.Вернадский". У В.И.Вернадского эта идея органично вытекала из его концепции биосферы, поскольку, как справедливо полагал ученый, одиночный организм, и даже вид не "мог бы исполнить все геохимические функции жизни, которые существуют в биосфере изначала". Плодотворность системного подхода в данном случае очевидна, и не случайно, что сейчас, когда системный подход становится нормой исследований в биологии, идеи В.Вернадского переживают пору возрождения и ведут ученых к ценным результатам.
Если совсем недавно биоценология была второстепенным разделом биологии, то теперь она становится одним из наиболее важных ее участков, имеющих большое практическое значение.
С позиций биоценологии вся биосфера представляет собой систему взаимосвязанных обменными процессами биогеоценозов, которые являются очень важными звеньями реализации биологического круговорота вещества и энергии в его взаимодействии с геологическим круговоротом.
Взаимосвязь различных видов организмов в биогеоценозах такова, что продукты жизнедеятельности одних видов, вредные для них самих, выступают условием жизнедеятельности других. Складывается, таким образом, непрерывная последовательность цепей питания, каждое из звеньев которых достаточно необходимо и незаменимо полностью. В обобщенном виде эти звенья можно представить как цепочку, идущую от автотрофов через гетеротрофы к сапрофагам, которые, разлагая органическое вещество, обеспечивают возврат химических элементов обратно в неживую природу. Следовательно, в биогеоценозах обеспечивается цикличность обменных процессов, их замкнутость. Однако эта цикличность относительна, так как в неживой природе идет непрерывный процесс совершенствования видов в ходе борьбы за существование.
Каждый органический вид стремится увеличить свою биогеохимическую энергию. Выживают и развиваются те виды, которые более преуспевают в этом процессе. В итоге каждый развивающийся вид способствует общему процессу аккумуляции вещества и анергии в биосфере. В силу обратного воздействия следствия на причину повышение вещественно-энергетического уровня биосферы сообщает органическому миру новый импульс развития и т.д. В целом образуется интегральный процесс восходящего развития всей живой природы.
В свете учения о биосфере все ее компоненты предстают как закономерно возникшие и необходимым образом связанные друг с другом обменными процессами. Каждый компонент играет вполне определенную и незаменимую для данного состояния роль в поддержании целостного и упорядоченного характера биосферы как системы. Сколько-нибудь существенное изменение любого из компонентов рано или поздно отражается на остальных и обусловливает соответственное их изменение. За счет этого обеспечивается саморегуляция биосферы и закономерный характер ее изменений во времени.
Принципы саморегуляции и целостности биосферы представляют для нас особый интерес. Поэтому мы остановимся на их рассмотрении подробнее.
2. Основные закономерности развития биосферы
Для уяснения специфики биосферы как саморазвивающейся системы необходимо прежде всего рассмотреть основные ее компоненты15, показать, что они — результат прогрессивной дифференциации вещества в ходе саморазвития биосферы, наконец, что взаимосвязь этих частей характеризуется специфическими закономерностями, обеспечивающими саморегулирование и целостность системы.
Такими частями являются: наружный слой литосферы, гидросфера, атмосфера, космические излучения в зоне поверхности Земли, живое вещество планеты и почва. Каждая из них в свою очередь состоит из частей меньшего порядка. Например, живое вещество состоит из тесно связанных между собой больших групп организмов: автотрофов, гетеротрофов и хемотрофов.
Исключительная разнородность частей биосферы и придает ей как целому особое своеобразие. Выделяются следующие виды неоднородности биосферы: агрегатная, пространственная, энергетическая, геохимическая, зональная качественная. В.И.Вернадский придавал большое значение свойству неоднородности биосферы, характеризовал его как своеобразную диссимметрию, мозаичность и видел в этом важнейший источник ее развития.
Агрегатная неоднородность биосферы состоит в том, что она представляет собой, пожалуй, единственный природный комплекс, в котором тесно взаимодействуют, оставаясь качественно обособленными, три агрегатных состояния — твердое, жидкое и газообразное. При постоянном, но неравномерном притоке космических излучений и особенно энергии Солнца, в условиях электромагнитного поля Земли и сферической земной поверхности взаимодействие различных агрегатных состояний вещества приобретает крайне противоречивый характер. Огромные массы воды, около 519000 куб. км в год, испаряясь с поверхности водоемов, переходят в газообразном состоянии в состав атмосферы, переносятся движением воздуха и низвергаются на сушу в виде ливней или оседают туманом и росой, Потоки воды вновь стекают к понижениям рельефа, оттуда попадают в многочисленные водоемы чтобы затем опять подняться в составе испарений в атмосферу.
Работа поверхностных вод постепенно приводит к выравниванию рельефа и, следовательно, к уменьшению энергии водного стока. Этому процессу противостоит поднятие отдельных участков суши в результате тектонических движений земной коры, происходящих медленно и незаметно, но иногда сменяющихся периодами бурного горообразования с землетрясениями и извержениями.
Наряду с поднятием одних участков суши происходит соответственное опускание других. Тектоническая неравномерность движений земной коры играет большую роль в изменении поверхности биосферы, в создании соответственной орографической неравномерности в виде неровностей рельефа, обуславливающих движение вещества на суше.
Пространственная неоднородность состоит, во-первых, в неравномерности распределения вещества в биосфере и, во-вторых, в структурной неравномерности тел биосферы по причине своеобразного соотношения моментов симметрии и диссимметрии.
Анализ вещественного состава биосферы показывает исключительную неравномерность распределения масс вещества в различных состояниях. Наибольшее количество массы сосредоточено в наружном слое литосферы и в гидросфере, гораздо меньшее — в составе атмосферы и, наконец, сравнительно незначительное количество вещества входит в состав организмов биосферы. Неравномерность распределения вещества, характерная и для неорганической части биосферы, в отношении органической части биосферы особенно разительна. Эта неравномерность распределения масс вещества и разнородность его агрегатных состояний, создавая разность потенциалов, обусловливает возможность движения и усложнения материи в системе биосферы.
Не менее велика роль вещественной неравномерности и структурной разнородности во взаимодействии органической и неорганической частей биосферы. Характерной чертой неживых тел является симметричное соотношение элементов структуры на молекулярном уровне, т.е. примерно одинаковое количество левых и правых стереоизомеров в составе вещества, тогда как для жизненно важных компонентов тел живой природы — белков, жиров, углеводов — характерно преобладание стереоспецифических изомеров, преимущественно левых. Это имеет большое значение для развития живой природы и биосферы в целом, поскольку стереоспецифические вещества энергетически более активны.
Энергетическая неоднородность выражается в неравномерном распределении по земной поверхности солнечной энергии (тепла, света), а также в неодинаковом соотношении вещества и энергии в телах биосферы в зависимости от их структуры. В симметрично организованных телах энергия находится преимущественно в связанном, потенциальном состоянии. И, наоборот, в телах, диссимметрично организованных (таковы в основном организмы), большая часть энергии пребывает в свободном, эффективном состоянии, что делает их энергетически более интенсивными. Следовательно, большей массе симметрично организованного вещества может соответствовать меньшее количество эффективной энергии, чем сравнительно небольшой массе диссимметрично и, особенно, асимметрично организованного вещества. Это прослеживается уже в неживой природе, но особенно характерно при сопоставлении живых и неживых систем. Наиболее симметричное тело неживой природы — кристалл — в то же время обладает наименьшим количеством эффективной энергии, и, наоборот, структурно диссимметричные жидкие и особенно газообразные тела энергетически наиболее активны. Например, кинетическая энергия морей составляет не более 2% кинетической энергии атмосферы, причем большая часть ее создана воздействием ветра на воду. В свою очередь энергия ветра возникает в основном за счет перепада температур между полярными и экваториальными зонами.















