11489 (647080), страница 2
Текст из файла (страница 2)
При делеции как комплекса ВХ-С, так и комплекса ANT-C получается картина сегментации, похожих на переднегрудные. Такие зародыши гибнут. Следовательно, гены, входящие в эти два комплекса, необходимы для определения особой судьбы большинства различных гнатоцефалических, грудных и брюшных сегментов. Отдельные ло-кусы функционируют в определенных сегментах, причем эта функция не выходит за пределы отдельных сегментов. Трансформации сегментов, вызываемые делецией генов, входящих в комплексы ВХ-С или ANT-C, или мутациями этих генов, не сводятся лишь к поверхностному изменению внешних кутикулярных структур. Если извлечь из личинок имаг-инальные диски, диссоциировать их и допустить реагрегацию клеток, то клетки одинаковых дисков соединяются друг с другом, а клетки из разных дисков отделяются одни от других. Если, однако, антенны трансформированы в результате гомеозиса в ногу, то эти клетки антенны-ноги воссоединяются и совместно образуют нормальные бластемы ноги. Эти результаты указывают на то, что поверхностные свойства клеток и их способности к распознаванию друг друга изменились под действием мутации. С помощью метода соматической рекомбинации была сделана попытка оценить число клеток, из которых на стадии клеточной бластодермы состоят различные имагинальные диски в момент их детерминации. Для диска, из которого образуются жужжальца, их число равно примерно 10, а для диска крыла – около 20. Кроме того, удалось проследить за динамикой пролиферации этих двух дисков, получая рекомбинантные клоны их клеток на более поздних стадиях развития. С помощью этого метода Гарсиа-Беллидо (Garcia-Bellido) и его сотрудникам удалось показать, что у двойных мутантов bx pbx изменяется как динамика роста, так и число клеток, вовлеченных в диск жужжальца на стадии клеточной бластодермы. Оба этих свойства, подобно морфологии диска, изменяются, и жужжальца становятся похожими на крыло, т.е. на производное среднегруди. То обстоятельство, что программа развития как личинки, так и имагинальных дисков при гомеозисе изменяется на очень ранней стадии (для зачатков, по-видимому, на стадии клеточной бластодермы), можно считать указанием на важную роль гомеозисных генов в фактической детерминации судьбы клеток. В пользу такого утверждения свидетельствует возможность получить фенокопии трансформаций, типичных для мутантов bithorax, путем нагревания зародышей, находящихся на стадии клеточной бластодермы. У зародышей в возрасте 2 ч, подвергнутых температурному шоку, возникают ненаследственные изменения развития, сходные с изменениями, наблюдаемыми у мутантов bx. Как показал Гарсиа-Беллидо, к таким же результатам приводит обработка зародышей того же возраста эфиром. Эффективность такой обработки значительно возрастает, если изменить дозу генов комплекса ВХ-С посредством гетерозиготных делеций bx и pbx; при этом частота фенокопии повышается. Эти наблюдения являются убедительным доводом в пользу того, что мишенью, на которую направлено действие гомеозисных локусов, служат ранние процессы детерминации. Эти локусы необходимы, однако, и для поддержания такого состояния. Температурочувстви-тельные мутации в локусах bx и pbx обладают температурочувствительным периодом, соответствующим третьей личиночной стадии (спустя 4–5 дней после детерминации клеток имагинальных дисков). Таким образом, характер детерминации этих клеток можно изменить после его первоначального формирования, но до дифференцировки, происходящей в процессе метаморфоза.
Результаты генетических и эмбриологических исследований гомеозисных генных комплексов Antennapedia и bithorax показывают, что эти локусы действительно играют роль переключателей, определяющих судьбу отдельных сегментов. Переключение происходит в период детерминации и, по-видимому, представляет собой результат позитивного действия названных локусов этих комплексов на батареи других генов. Следует отметить, что альтернативный путь развития, происходящий в отсутствие этих генов, не бывает хаотическим; в норме он наблюдается у некоторых других частей животного, так что эти гены можно в самом деле рассматривать как переключатели, производящие выбор из нескольких альтернативных состояний. Изменение реакции, вызванное гомеозисной мутацией, не приводит, как хотелось бы Гольдшмидту, к появлению «перспективных монстров», обладающих потенциальными возможностями для макроэволюционных событий. На самом деле изменения эти носят атавистический характер и могут дать сведения об истории генетических регуляторных механизмов, приобретенных в процессе эволюции. Вероятно, особенно ясно это можно продемонстрировать на примере эволюционной истории насекомых.
Филогения членистоногих, или как гомеология повторяет филогению
Эта филогения построена на основании данных палеонтологических, эмбриологических, сравнительно-анатомических и различных других исследований. Членистоногие возникли от некого предка, сходного с кольчецами, по всей вероятности, в конце докембрия, а первая значительная радиация этой группы началась в кембрии. Среди ископаемых остатков, найденных в нижнепалеозойских отложениях, обнаружены представители всех групп членистоногих, за исключением насекомых. Насекомые появляются в верхнем палеозое, т.е. примерно 350 млн. лет назад. Если в отношении происхождения членистоногих от кольчецов (или от какой-то сходной с ними группы) существует известное единодушие, то по вопросу о том, являются ли главные группы членистоногих моно- или полифилетическими, единого мнения нет. Мы не собираемся вступать в эту дискуссию, а сконцентрируем внимание на той части филогении, которая относится к группе членистоногих Uniramia и от которой в конечном счете произошли насекомые. Изменения в характере сегментации у этой группы членистоногих можно проанализировать в свете гомеозисных мутаций дрозофилы.
К признакам, позволяющим считать кольчецов предками членистоногих, относятся лежащая в основе их строения метаметрия, расположение нервной системы на вентральной стороне, а сердца – на дорсальной стороне тела; это признаки, которыми обладают все членистоногие. Несмотря на эти общие для обеих групп признаки взрослых особей, они сильно различаются по ранним стадиям развития. Для кольчецов, так же как для моллюсков, характерно спиральное дробление, тогда как у членистоногих дробление в общем центролецитальное, описанное выше для дрозофилы. Поэтому одним из крупнейших событий в возникновении членистоногих было резкое изменение раннего развития при сохранении взрослыми особями основного плана строения. После дробления и гаструляции у этого червя образуется свободноплавающая личинка – трохофора. Эта личинка разделена двумя венчиками ресничек на три обособленные области. Передняя, предротовая, часть отделена от средней, туловищной, части прототрохом. Задняя, пигидиальная, отделена от средней части телотрохом. В процессе развития личинки ее туловищная часть разделяется на три обособленных туловищных сегмента. На этой стадии у личинки можно различить в общей сложности шесть сегментов: предротовой, ротовой, три туловищных и хвостовой, или пигидий. Личинка продолжает расти путем добавления новых сегментов в зоне нарастания, находящейся между последним туловищным сегментом и пигидием. Этот рост кзади сопровождается постепенным усложнением структур, специфичных для каждого вида, на самых задних сегментах. После того как личинка достигнет полного развития, она в результате метаморфоза превращается во взрослого червя. Этот последний вопрос нас здесь не интересует; нам достаточно отметить сегментарную структуру животного и то, как эта сегментарная структура изменяется на «следующей» стадии филогенеза насекомых. Когда впервые были открыты онихофоры, их сочли «недостающим звеном» между кольчецами и высшими членистоногими. На первый взгляд это кажется правильным, и они в самом деле представляют собой промежуточную форму. Однако онихофоры не являются прямыми предками насекомых. Дробление у них центролецитальное, и у видов, имеющих крупные, богатые желтком яйца, бластодерма образуется на поверхности массы желтка путем целлюляризации. В процессе гаструляции на среднебрюшной поверхности бластодермы формируются две эктодермальные зародышевые полоски и происходит инвазия мезодермальных клеток в бластодерму. Крупные гаструляционные перемещения клеток возникают только в связи с образованием переднего зачатка средней кишки. Эти перемещения начинаются на презумптивном переднем конце животного и распространяются к хвостовому его концу. Вслед за началом этих перемещений начинается процесс сегментации. За которым на этой стадии следует ряд сходных сегментов, дающих сомиты. Как и у личиночных форм полихет, новые сегменты образуются субтерминально, в задней зоне нарастания. Сегментация завершается до рождения на свет (большинство видов онихофор живородящие или яйцеживородящие). Д изображена более поздняя стадия эмбриогенеза Peripatopsis capensis, соответствующая началу развития головы. Голова состоит из переднего антеннального сегмента, единственного челюстного сегмента, на котором находится рот, и сегмента, несущего ротовые сосочки, где открываются протоки слизистых желез. Позади головы расположен ряд одинаковых туловищных сегментов, от каждого из которых у взрослой особи отходит членистая нога, снабженная коготком.
Антеннальный, челюстной и сосочковый сегменты – цефализированные туловищные сегменты, которые мобилизованы, в эволюционном и онтогенетическом смысле, функционировать в качестве ротовых частей. Надежных данных о наличии у онихофор процефалического сегмента, подобного имеющемуся у кольчецов и высших Uniramia, нет. Отчасти поэтому современные онихофоры считаются реликтами, а не подлинным промежуточным звеном между кольчецами и следующей ступенью в филогенезе насекомых. У многоножек – очередной ступени филогенетической лестницы, по которой мы следуем, – имеются разного рода второстепенные изменения общего плана развития, наблюдаемого у онихофор. Дробление у них продолжает оставаться центролецитальным, хотя у некоторых групп гаструляция несколько изменена. Многоножки делятся на две основные группы – дигнатические и тригнатические – различающиеся по сегментации головы. Возможно, что дигнатические многоножки появились в процессе эволюции позднее, несмотря на менее сложное строение их головы. После гаструляции зародышевая полоска пересекается рядом борозд, в результате чего образуется группа сегментов: у тригнатических многоножек – это головные, антеннальные, премандибулярные, мандибулярные, максиллярные. нижнегубные и от 3 до 6 туловищных сегментов. Эта стадия показана на примере Hanseniella. Как и у онихофор, полный комплект сегментов взрослой особи создается в процессе эмбриогенеза (в зоне нарастания между предпоследним задним сегментом и анальной областью). Дальнейшее развитие приводит к совершенствованию строения ходильных ног, имеющихся на каждом из туловищных сегментов, и к формированию ротовых частей из мандибулярного, максиллярного и нижнегубного сегментов. Премандибулярный сегмент несет лишь временный придаток и не играет заметной роли в формировании головы взрослой особи. Лежащие впереди антеннальный и процефалический сегменты несут антенны и клипеолабрум соответственно. Таким образом, у многоножек в образовании головы участвуют не три, как у онихофор, а шесть сегментов. Но, так же как и у онихофор, эти специализированные сегменты возникли в результате заимствования элементов из послеротовой туловищной области раннего зародыша. У дигнатических многоножек наблюдается своеобразное отличие в типе сегментации. Сегмент, соответствующий нижнегубному сегменту тригнатических многоножек, не участвует в образовании ротовых частей взрослой особи. Вместо этого он превращен в специализированный шейный сегмент (collum), образуя подобие шейки между головой и первым туловищным сегментом. В остальном характер сегментации у обеих групп многоножек сходен. В частном примере Pauropus silvaticus, представленном на рис. 8–12, А-Г, есть еще одно резкое и существенное различие. Для класса Pauropoda, к которому относится эта многоножка, характерен анаморфоз, а не эпиморфоз, как у описанного выше представителя Chilopoda. При развитии с анаморфозом животное вылупляется с неполным набором туловищных сегментов. В, у только что вылупившейся особи имеются всего три туловищных сегмента. Остальные сегменты, имеющиеся у взрослой особи, приобретаются в результате субтерминального их добавления в зоне нарастания на заднем конце животного. Это нельзя считать признаком дигнатизма как такового, потому что у Symphyla – группы тригнатических многоножек – также наблюдается анаморфоз. Существование личиночной формы, имеющей всего три туловищных сегмента, было сочтено частичным доказательством того, что насекомые возникли от какого-то сходного с многоножками предка в результате педогенеза. В такой возможности убеждает изучение примитивных бескрылых насекомых (Apterygota).
Среди бескрылых насекомых есть группы, раннее развитие которых сходно с развитием либо многоножек, либо крылатых насекомых. Андерсон (Anderson) считает эти вариации функциональными адаптациями каждой отдельной группы, а не существенными различиями, опровергающими наличие связи между многоножками и насекомыми. Наиболее ярко выраженное сходство между многоножками, бескрылыми и крылатыми насекомыми и между самими бескрылыми касается способа сегментации зародышевой полоски. У бескрылых, так же как и у тригнатических многоножек, в начале процесса сегментации имеется шесть головных сегментов, за которыми следуют три туловищных сегмента. В процессе дальнейшего развития в субтерминальной зоне нарастания кпереди от терминального хвостового сегмента образуются остальные туловищные сегменты. Гнатоцефалические сегменты пополняются за счет туловищных элементов зародыша и их придатков, модифицированных в ротовые части. Главное отличие бескрылых от многоножек состоит в том, что их туловище разделено на грудь, состоящую из трех сегментов, и брюшко из восьми сегментов. Ходильные ноги имеются только на груди, а придатки брюшка сильно редуцированы. Сравнение рис. 8–12, В и Г и 8–13, Е выявляет поразительное сходство в строении тела анаморфных многоножек и примитивных бескрылых насекомых; главное различие между ними – подавление у бескрылых насекомых развития конечностей на сегментах, расположенных позади третьего туловищного сегмента.















