11332 (646993), страница 2
Текст из файла (страница 2)
Существуют и другие проекты, в которых используется гибридная солнечно-топливная СЭС, мощностью 30 МВт с объемным ресивером, в котором подогревается атмосферный воздух, направляемый затем в паровой котел, где производится водяной пар, работающий в цикле Ренкина. На тракте воздуха от ресивера к котлу предусматривается горелка для сжигания природного газа, количество которого регулируется таким образом, чтобы в течение всего светового дня поддерживать заданную мощность. При этом стоимость электроэнергии вырабатываемой СЭС ожидалась на уровне ТЭС на органическом топливе.
В 90-ые годы в мире повысился интерес к фотоэлектрическим установкам (ФЭУ), непосредственно преобразующим солнечную радиацию в электроэнергию. Правда, стоимость электроэнергии, вырабатываемой фотоэлектрическими установками на сегодня в несколько раз выше, чем СЭС с тепловым циклом, но тем не менее ФЭУ активно внедряются как в развитых, так и в развивающихся странах при активной поддержке международных организаций, в том числе Мирового банка на основе выдвинутой им "Солнечной Инициативы".
Интерес к ФЭУ увеличивается еще и потому, что динамика изменения их технико-экономических показателей позволяет прогнозировать их конкурентоспособность по сравнению с другими источниками электроэнергии для ряда областей применений.
Основные мировые производители фотоэлектрической продукции изготавливают солнечные элементы в основном из кристаллического (моно-, поли-) кремния, аморфного кремния, CdTe, CuZnSe и других тонкопленочных структур. Соотношение объемов выпуска таково: кристаллический кремний - 75%, аморфный кремний - 20%, другие - 5%.
Массовое производство ФЭС связано с созданием технологий и материалов, позволяющих снизить стоимость установленной мощности примерно в 2-3 раза. Принципиальным ограничением для такого снижения стоимости является высокая цена кремния солнечного качества. В настоящее время для получения чистого кремния используется хлорсилановая технология производства, разработанная около 35 лет назад и имеющая много отрицательных моментов, в том числе высокую энергоемкость, низкий выход кремния и экологическую опасность. Поэтому создание новых технологий получения кремния, обеспечивающих радикальное снижение его стоимости - задача номер один в перечне альтернативных технологий в энергетике.
Подобные технологии стали создаваться и в России. Напомним, что научные и технологические позиции нашей страны в области фотоэлектричества при активной поддержке государства оставались лидирующими до 80-х годов. К сожалению в начале 90-х эта поддержка свелась к нулю и, в первую очередь, это коснулось наземной фотоэнергетики, то есть той сферы, где существует рынок. Несмотря на то, что в России есть компании-производители фотоэлектрических систем, можно смело утверждать, что рынок фотоэнергетики в России отсутствует. Однако наши фотоэлектрические модули востребованы за рубежом. Отечественным производителям даже реклама не нужна. У некоторых из них мощности на несколько лет вперед загружены заказами от иностранных компаний.
Между тем полное количество солнечной энергии, поступающей на поверхность Земли, превышает энергию всех мировых запасов нефти, газа, угля и урана и других энергетических ресурсов, а в России с этим еще лучше: солнечная энергия, поступающая за неделю на территорию нашей страны, превышает энергию всех российских ресурсов нефти, угля, газа и урана. Поэтому солнечная энергия может стать энергетической основой и первичным источником энергии будущего устойчивого развития экономики для некоторых регионов России. Отметим наиболее благоприятные районы для использования солнечной энергии в России - это Северный Кавказ, Астраханская область, Калмыкия, Тува, Бурятия, Читинская область, Дальний Восток.
Существует два основных способа сооружения СЭС (использующих термодинамическое преобразование солнечной энергии).
Из солнечной энергии методом термодинамического преобразования можно получить электричество практически так же, как и из других источников энергии, однако, солнечное излучение, падающее на землю, обладает рядом характерных особенностей:
1. низкой плотностью потока энергии;
2. суточной и сезонной цикличностью
3. зависимостью от погодных условий.
Поэтому при термодинамическом преобразовании этой энергии в электрическую следует стремиться к тому, чтобы применение тепловых режимов не вносили серьезных ограничений работы системы и, чтобы не возникало трудностей, связанных с ее использованием, т.е. подобная система должна иметь аккумулирующие устройства для исключения случайных колебаний режимов эксплуатации или обеспечение необходимого изменения производства энергии во времени.
Термодинамический преобразователь солнечной энергии должен содержать следующие компоненты:
1. систему управления падающей радиации,
2. приемную систему, преобразующую энергию солнечного излучения в тепло, которое передается теплоносителю,
3. систему переноса теплоносителя от приемника к аккумулятору или к одному или нескольким теплообменникам, в которых нагревается рабочее тело,
4. тепловой аккумулятор,
5. теплообменники.
Существует два подхода к созданию солнечных станций, работающих по термодинамическому циклу.
1. использование небольших (централизованных) станций для отда ленных районов.
2. создание крупных солнечных энергетических установок мощностью в несколько десятков мегаватт, рассчитанных на работу в энергосистеме.
2.1 Коллекторы солнечной энергии
Основным конструктивным элементом солнечной установки является коллектор, в котором происходит улавливание солнечной энергии и ее преобразование в теплоту и нагрев воздуха, воды или другого теплоносителя.
Различают два типа солнечных коллекторов:
1. плоский,
2. фокусирующий.
В плоских коллекторах солнечная энергия поглощается без концентрации, а в фокусирующих - с концентрацией, т.е. с увеличением плотности поступающего потока радиации.
Концентраторы солнечной энергии.
Концентраторы - это оптические устройства в виде зеркал или линз, в которых достигается повышение плотности потока солнечной энергии.
Зеркала плоские, параболоидные или параболоцилиндрические изготавливаются из тонкого металлического листа или фольги или др. Материалов с высокой отражательной способностью.
Солнечные станции строятся в основном двух типов:
1 - СЭС башенного типа,
2 - СЭС модульного типа.
Система, состоящая из множества небольших концентрирующих коллекторов, каждый из которых независимо следит за солнцем - модульная СЭС.
Концентраторы не обязательно должны иметь форму параболоида, не обычно это предпочтительно. Каждый концентратор передает солнечную энергию жидкости теплоносителя. Горячая жидкость ото всех коллекторов собирается в центральной энергостанции. Тепло несущая жидкость может быть водяным паром, если она будет прямо использоваться в паровой турбине или какой-нибудь термохимической средой - например, диссоциированный аммиак. Основные недостатки систем с сосредоточенными коллекторами:
1 - для каждого отражателя требуется сложный по конструкции термический приемник, который размещается в его фокальной области.
2 - для съема энергии 20000 параболоидных отражателей привод генератора мощностью 100 МВт необходим дорогой высокотемпературный обменный контур, соединяющий рассредоточенные концентраторы.
Указанные выше трудности разрешаются, если вместо этих 10-20 тысяч приемников сделать один аналогичный по своим размерам и параметрам паровому котлу обычного типа, и поднять его над поверхностью Земли.
Таким образом, возникает концепция гелиостанции башенного типа. В этом случае все параболоиды заменяются практически плоскими отражателями, производство которых значительно дешевле.
2.2 Солнечные пруды
Солнечный пруд представляет собой оригинальный нагреватель, в котором теплозащитной крышкой является вода.
Достаточно большой водоем может быть просто вырыт (могут быть использованы и природные водоемы, например, в Израиле использовано Мертвое море в качестве солнечного пруда), что относительно недорого.
Солнечный пруды содержат в себе и накопители тепла, поэтому область их использования может быть довольно широкой. Солнечные пруды могут быть использованы в гелиосистемах отопления и горячего водоснабжения жилых и общественных зданий, для получения технологической теплоты, в системах кондиционирования воздуха абсорбционного типа, для производства электроэнергии, т.е., солнечный пруд служит одновременно коллектором и аккумулятором теплоты.
В солнечный пруд заливается несколько слоев воды с различной степенью солености, причем наиболее соленый слой (0,5 м) располагается на дне. Солнечное излучение поглощается окрашенными в темный цвет дном водоема и придонный слой воды нагревается.
Придонный слой воды берется настолько более соленым, чем слой над ним, что плотность его хотя и уменьшается при нагревании, но все-таки остается выше плотности более высокого слоя. Поэтому конвекция (подъем вверх более теплой - более легкой - воды) подавляется и придонный слой нагревается все сильнее до 90° С, иногда - до кипения, при этом температура поверхностного слоя остается на уровне температуры окружающей среды. Пруд глубиной до 2-х м способен обеспечить непрерывную работу СЭС при прекращении инсоляции на срок до недели, пруды большей глубины могут обеспечить сезонный цикл аккумуляции. Правда, для этих СЭС требуются большие площади земельных угодий, в остальном - экологически приемлемые сооружения, тем более, что соленые пруды в естественных условиях существуют веками.
3. Традиционные методы получения и очистки биополимеров
Технологии получения биополимеров клетки включают следующие направления:
биопроцессинг с использованием живых клеток как продуцентов биополимеров - нуклеиновых кислот, белков, гормонов, стероидов, углеводов, полисахаридов, моно - и поликлональных антител и др.;
антисенс-технологии (антисмысловые), в основе которых лежит химический синтез биополимеров клетки на основе исходного сырья биологического происхождения.
При высокоскоростном получении биополимеров клетки (белков, гормонов, ферментов, углеводов, полисахаридов, моно - и поликлональных антител) медицинского, сельскохозяйственного и промышленного назначения используются такие продуценты как живые растительные, микробные, животные клетки и клетки человека, культивируемые in vitro в суспензиях; иммобилизованные клетки и ферменты; культивируемые in vitro инкапсулированные гибридомы.
Антисенс-технологии с использованием антисенс-олигонуклеотидов (фрагментов нуклеиновых кислот), антисенс-РНК (рибонуклеиновых кислот), рибозимов - антисенс-РНК или антисенс-олигонуклеотидов с ферментативными свойствами, ДНК-триплексов нацелены на создание ген-направленных биологически активных веществ, способных избирательно подавлять в живом организме активность вирусов, онкогенов и ростовых факторов, а также изменять структуру клеточных рецепторов при различных патологиях.
Преимуществами современных технологий биопроцессинга являются:
возможность многократного использования клеток-продуцентов биополимеров, что обеспечивает экономию сырья и трудовых затрат;
достижение максимального обособления фаз роста биомассы и биосинтеза целевого продукта;
упрощение процедуры очистки и выделения конечного продукта;
проведение синтеза биополимеров в асептических условиях;
реализация технологии получения биополимеров при нормальных температуре и давлении;
использование необходимых химических веществ в питательной среде для целенаправленного воздействия на культивируемые клетки-продуценты биополимеров;
возможность включения биопроцессинга как технологической стадии в промышленное производство биологически активных веществ с помощью тонкого органического синтеза с целью его оптимизации;
перспективы организации биопроцессинга как малотоннажного, так и крупномасштабного производства.
Антисенс-технологии характеризуются значительной экономичностью, высокими скоростью синтеза, избирательностью и чувствительностью комплиментарного взаимодействия антисенс-соединений с целевыми участками нуклеиновых кислот, а также эффективностью воздействия на живые системы.
Область применения. Данная технология находит применение в здравоохранении и ветеринарии (получение нового поколения диагностикумов, противовирусных и противоопухолевых лекарственных препаратов; генодиагностика и генотерапия), отраслях промышленности (использование биополимеров как биокатализаторов, получение пищевых добавок, повышение нефтеотдачи, оптимизация процессов добычи редких металлов из руд), сельском хозяйстве (инсектициды и биоудобрения), для защиты окружающей среды (биоремедиация почв, очистка воды).
Основания для выбора. Технология получения биополимеров клетки имеет большое значение для развития многих областей народного хозяйства, т.к. обеспечивает высокую скорость синтетических процессов, экономична. Она позволяет организовать в стране крупномасштабное производство биополимеров - биологически активных веществ.















