11198 (646927), страница 2

Файл №646927 11198 (Аксиомы биологии по Б.М. Медникову) 2 страница11198 (646927) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Другой его довод – межвидовые скрещивания. Мул, потомок осла и лошади, имеет черты и отца (голос, длинные уши, выносливость) и матери (пропорции тела, величину, силу). Из свидетельств современников нам известно, что дом Мопертюи был переполнен всяческим зверьем и хозяин ставил опыты по гибридизации, пытаясь понять законы наследственности (это за сто лет до Менделя!). Более того, Мопертюи применил классический метод современной генетики человека – анализ родословных. Он исследовал родословную семьи Руге, в которой был распространен весьма наглядный наследуемый признак – полидактилия (шестипалость) Из анализа этой родословной вытекала несостоятельность теории преформации: Я думаю, что нам пора признать заслуги Мопертюи и считать его предтечей современной генетики.

Удивительно, что доводы Мопертюи не имели сколько-нибудь существенного успеха. Преформизм продолжал торжествовать. Вероятно, это объяснялось тем, что большинство ученых полагало, что наука о наследственности – одно, наука о развитии – другое, наука об атомах – третье. А ведь достаточно, как мы уже видели, признать существование атомов и гипотеза о вложенных друг в друга, как матрешки, зародышах автоматически отпадает.

Да и в наши дни физик У. Эльзассер утверждает, что существуют некие «биотонические законы», которые не выводятся дедуктивно из законов физики. Они-то и управляют развитием организма. Не будем на них останавливаться. Беспощадный, но справедливый отзыв о эльзассеровских законах голландского эмбриолога Х. Равена: «Ощущаешь, что находишься на грани, если не в самой гуще, того пустословия, где витализм чувствует себя как дома».

Итак, и преформация, и эпигенез оказываются одинаково идеалистическими. Впервые это понял в 1763 году Иммануил Кант, изложивший свои соображения в сочинении под выразительным названием «Единственно возможное основание для доказательства бытия бога». Крупный французский натуралист и историк естествознания Флуранс объяснял в 1861 году возникновение теории преформации стремлением к экономии чудес. Если возникновение живого существа чудо, так уж лучше, чтобы оно произошло один раз, при сотворении мира, чем осуществлялось при каждом акте развития.

Еще в середине нашего века исследователи развития стояли перед небогатым выбором: абсурд теории вложенных друг в друга зародышей-матрешек или же витализм того или иного толка, в конце концов, сводимый к конечной причине Аристотеля. Помощь пришла неожиданно и из той области, откуда ее совсем не ждали.

Генетическая теория развития. Наше время – время «умных» машин. Однако машина, выполняющая более или менее сложную работу согласно вложенной в нее программе, отнюдь не такая уж новинка. Уже в начале прошлого века существовали станки для набивки материи и вязки кружев, а также всякого рода музыкальные инструменты – механические органы, шарманки, механические пианино, выдававшие довольно сложные структуры в виде последовательностей узоров, рисунков и звуков разной тональности по программе. Программа в такие устройства вкладывалась в виде металлической или картонной пластинки с пробитыми в ней отверстиями. Так что перфокарта – совсем не достижение века кибернетики.

Со временем перфокарту сменила магнитная лента и считывающая с нее команды головка. Полагаю, и лента заменится в будущем какой– либо голографической пластинкой или же кристаллом, в котором будет записан огромный массив информации.

Какое же отношение станки с программным управлением могут иметь к проблеме развития организмов? Оказывается, самое прямое.

Крупный математик Джон фон Нейман, вместе с Норбертом Винером и Клодом Шенноном считающийся создателем новой отрасли знания – кибернетики, как-то задумался: возможно ли построить такую машину, которая, следуя заложенной в ней системе инструкций, построила бы точную копию самой себя? Иными словами, воспроизвести в металле биологическую смену поколений, построить саморазмножающийся автомат.

Согласно математическим выкладкам фон Неймана существует определенный порог сложности машины, ниже которого она не может воспроизводить себе подобных. Естественно, возникает вопрос: как объективно измерять степень сложности системы? Сложность системы измеряется количеством информации, потребной для ее описания. Наиболее распространена двоичная единица информации – бит. Столько информации содержится в ответе «да» или «нет» на какой-либо вопрос.

Например, любой ответ на вопрос: «Пойдете ли вы сегодня в кино?» – содержит один бит информации.

Вот так в битах информации фон Нейман оценил сложность системы, способной воспроизводить самое себя. Она оказалась довольно большой – порядка миллиона бит, то есть система должна была бы состоять не менее чем из десяти тысяч элементов. Это очень сложная система, современные станки с программой на магнитной ленте много проще.

Но, допустим, мы создали такую машину, ввели в нее ленту с программой для постройки дочерней» машины и запустили ее. Воспроизвели бы мы в металле смену поколений?

Оказывается, нет. «Дочерняя» машина будет бесплодной: ведь в ней нет ленты с программой. Чтобы появилось третье машинное поколение, в машине-родоначальнице нужно предусмотреть лентокопирующее устройство, передающее по наследству копию программы. Итак, согласно Нейману, по наследству передается не структура, а описание структуры и инструкция по ее изготовлению. И весь процесс развития состоит из двух раздельных операций – копирование этой программы (того, что генетики называют генотипом) и постройка собственно организма (того, что они называют фенотипом).

Вот мы и подошли к формулировке первой аксиомы биологии.

Все живые организмы должны быть единством фенотипа и программы для его построения (генотипа), передающегося по наследству из поколения в поколение.

Ничто не ново под луной. Еще в конце прошлого века биолог Август Вейсман сформулировал этот принцип (деление организма на сому и наследственную плазму).

Все последующие успехи генетики и теории информации лишь блестяще подтвердили его.

Что дает новая теория развития по сравнению с преформизмом?

Что дает? Да все: мы сразу избавляемся от подавляющей картины бесконечной вереницы вложенных друг в друга зародышей. И не нужно отождествлять генетическую теорию развития с преформизмом, как это иногда делают (появился даже термин «неопреформизм»). Делая это, мы отождествляем программу построения структуры с самой структурой. Но это столь же нелепо, как отождествлять страницу из поваренной книги с обедом, рецепт – с лекарством и чертеж автомобиля – с самим автомобилем.

Как и в теории эпигенеза, упорядоченность организма в каждом новом поколении возникает заново.

Но упорядочивающий фактор – не мистическая энтелехия Аристотеля или «существенная сила» Вольфа. Это вполне реальная программа, закодированная, как мы теперь знаем, в длинных нитевидных молекулах дезоксирибонуклеиновой кислоты – ДНК или рибонуклеиновой кислоты – РНК у некоторых вирусов.

Порядок организма возникает не из ничего, а из порядка полученной от родителей программы.

Подчеркнем одно обстоятельство. Наша трактовка первой аксиомы функциональна, она не связывает первое условие жизни с каким-либо конкретным химическим веществом. Самовоспроизводящуюся машину можно в принципе построить, вкладывая в нее программу, записанную на магнитной ленте или в совокупности перфокарт или еще каким-либо способом.

Принцип раздельного копирования при совместном существования генотипа и фенотипа остается незыблемым. То же и в жизни. В земных условиях основа фенотипа – белки, основа генотипа – нуклеиновые кислоты. Но не подлежит сомнению, что жизнь во Вселенной бесконечно разнообразна. Где-нибудь на планете системы тау Кита или альфа Эридана жизнь может быть построена на иной структурной основе, но по единому для всей Вселенной принципу. Аксиома № 1 едина для всего живого. Жизнь на основе только одного фенотипа или же одного генотипа невозможна, при этом нельзя обеспечить ни самоподдержания, ни самовоспроизведения сложной специфической структуры.

Рассмотрим справедливость нашей первой аксиомы на ряде конкретных примеров. Итак, фенотип не может воспроизводиться без генотипа, и наоборот. Фенотип возникает по программе, кодированной в генотипе, и заодно копирует генотип для будущего поколения. Но возможны случаи, когда генотип копируется при посредстве чужого фенотипа. Тогда порог сложности, определенный фон Нейманом, снимается: возникают простейшие образования – вирусы, на примере которых можно проследить все стадии редукции фенотипа.

Генотип фагов довольно сложен (около ста генов). Но есть и более простые фаги, например φX174, он гораздо меньше Т4 и представляет правильный двадцатигранник без хвостовой части. Его генотип кодирует всего девять белков.

Рассмотрим теперь обратные примеры. Можем ли мы назвать живыми организмы или хотя бы клетки без генетической программы? Таковы безъядерные клетки – эритроциты млекопитающих или же клетки хрусталика глаза. Эритроцит теряет основное свойство жизни, он не поддерживает свою структуру, распадаясь за четыре месяца, и не может размножаться делением. Это всего лишь часть структуры живого организма. Сам по себе он не может жить, как любая отдельно взятая часть самолета не может летать.

На безъядерных клетках – как появляющихся в результате естественных процессов, так и получаемых в эксперименте – следует несколько задержаться: более наглядных примеров для жизни генетических программ мы не найдем.

Возьмем, к примеру, глаз млекопитающего. Как он формируется во время индивидуального развития животного? Сначала появляется так называемый глазной пузырь, затем наружный слой клеток, эктодерма, над глазным пузырем утолщается и втягивается внутрь полости будущего глаза, отшнуровывается и замыкается в пузырек. Это станет потом хрусталиком. Его стенки сложены клетками эпителия. В принципе они такие же, как те, что выстилают, скажем, внутреннюю поверхность наших кровеносных сосудов или слизистые оболочки. У них нормальные ядра, они синтезируют много белков, могут размножаться делением. Но в хрусталиковом пузырьке они меняются, постепенно переходят в длинные стекловидные прозрачные хрусталиковые волокна. Набор белков, синтезируемых ими обедняется, нарабатываются только специфичные структурные белки – кристаллины. Их три: альфа-, бета– и гамма-кристаллины (у птиц и пресмыкающихся синтезируется еще один – четвертый). В начале их синтеза клетка еще способна делиться. Но постепенно ее цитоплазма заполняется хрящеподобной кристаллиновой массой, сама клетка вытягивается в волокно. Параллельно идет быстрая потеря ДНК в ядре: если в начале этого процесса количество ДНК такое же, как у нормальной клетки с двойным (диплоидным) набором хромосом, то затем в хрусталиковом волокне ее не удается обнаружить самыми чувствительными методами. Это волокно уже не делится и не поддерживает свою структуру. Тем самым оно отличается от многих других клеток организма, в норме хотя и не делящихся, но сохраняющих ядро – такие клетки еще способны к «ремонтным работам».

Клетки без генетической программы, без ядра (энуклеированные) можно получить искусственно. Эмбриологи давно уже научились проводить такие операции на оплодотворенных яйцеклетках некоторых животных: их сначала откручивают на центрифуге, отчего ядро как более тяжелое смещается в нижнюю часть клетки, а уж после этого при определенном навыке относительно нетрудно разделить под микроскопом яйцеклетку на часть без ядра и на часть с ядром. Результат всегда один: безъядерная часть постепенно рассасывается, из части с ядром развивается нормальный организм.

Но наиболее удачный объект для подобных опытов – обитающая в теплых морях, включая Черное море, водоросль ацетабулярия. Ее строение очень характерно. Так, например, распространенная у нас ацетабулярия средиземноморская имеет вид миниатюрной – несколько миллиметров и более – поганки с плоской шляпкой на длинной ножке, шляпка у некоторых видов достигает 5 сантиметров в диаметре. И этот грибок состоит из одной клетки! Оперировать ее можно без особых ухищрений, тем более что ядро этой водоросли помещается в самой нижней части ножки, у корнеобразных выростов ризоидов, которыми водоросль прикрепляется к грунту. Хирургические операции сводятся к тому, что водоросль разрезают на куски и наблюдают за их дальнейшим «поведением».

Все эти примеры о великой роли генетических программ относятся к клеточной форме организации живого. А как обстоит дело у неклеточных форм жизни, у вирусов?

Открытый первым и наиболее хорошо изученный вирус табачной мозаики (ВТМ) – длинная палочка, точнее трубка, состоящая на 95 процентов из белка и 5 процентов РНК. Трубчатый белковый чехол состоит примерно из 2300 молекул белка; на внутренней его поверхности пологой спиралью расположена длинная нить РНК.

В уксусной кислоте (66 процентов) ВТМ распадается на отдельные молекулы белка и РНК. Если кислоту нейтрализовать щелочью, молекулы белка снова слипаются, образуя длинные трубчатые гильзы. РНК тут не обязательна, в ее отсутствие образуются столь же длинные, а то и длиннее обычных, белковые трубки, внешне неотличимые от исходных вирусных частиц. Но заразить клетку табака они не могут. Основное свойство живого – самовоспроизведение – утеряно вместе с генетической программой.

Наш анализ первой аксиомы завершим таким примером. Вирусологов последние двадцать лет весьма интересовала загадочная болезнь овец – инфекционная чесотка, поражающая периферийные нервные окончания, развивающаяся очень медленно и, в конце концов, приводящая к смерти. Ее назвали скрепи (scrape); она очень напоминала другие болезни овец (висна, рида, мэди) и людей (амиотрофический боковой склероз). Известно уже около 15 таких болезней, так называемых медленных вирусных инфекций. Здесь экзотичен способ заражения: согласно религиозным обычаям форе на поминках по родствевнику еще несколько лет назад обязаны были съедать его мозг. А куру, как и подавляющее большинство медленных вирусных инфекций, тяготеет к клеткам нервной системы.

Характеристики

Тип файла
Документ
Размер
249,56 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее