10894 (646770), страница 2
Текст из файла (страница 2)
Число фенотипических классов будет больше, если один или оба признака не проявляют полного доминирования (в этом случае гетерозиготы отличаются от любой гомозиготы). Их будет меньше, если два гена действуют на один признак. Так, если бы оба гена А а В были нужны для развития окраски, то у гибридов F2 наблюдалось бы соотношение 9 окрашенных: 7 бесцветных.
Рис. 3.
Рис.4. Возвратное скрещивание с рецессивной гомозиготой используется для определения генотипа.
Соотношение гамет, образованных растением с неизвестным генотипом, отражает обычно независимое расщепление аллелей и независимую комбинацию генов. Генотип каждой гаметы выясняется непосредственно в скрещивании с гаметой, несущей только рецессивные аллели.
Иной цели служит процесс образования половых клеток (гамет, т.е. яйцеклеток или сперматозоидов), который происходит при другом типе деления. Этот путь деления изображен на Рис.6. В процессе мейоза образуются клетки, содержащие гаплоидное число (и) хромосом. Этот процесс включает в себя два последовательных деления. И в этом случае хромосомы сначала удваиваются, так что клетка приступает к делению в состоянии 4и.
В начале первого деления гомологичные пары сестринских хроматид конъюгируют (соединяются попарно), образуя биваленты. Каждый бивалент содержит все четыре копии одного гомолога, находящиеся в клетке. В первом делении каждый бивалент расщепляется на две пары сестринских хроматид, разделенных в свою очередь на полухроматиды. В результате образуются два набора по 2п хромосом, из з пар сестринских хроматид каждый.
Далее следует второе мейотическое деление, в котором оба набора 2п делятся еще раз. Это деление формально подобно митотическому делению, поскольку в различные дочерние клетки попадает по одной из копий каждой пары сестринских хромосом.
Общий результат мейоза заключается в том, что исходное число хромосом 4п делится на четыре гаплоидные клетки, дающие начало зрелым яйцеклеткам или сперматозоидам.
При формировании гамет гомологи отцовского и материнского происхождения разделяются так, что каждая гамета получает только один из двух гомологов своих родителей. Существенным моментом в этом процессе является тот факт, что в полном соответствии с законами Менделя наблюдается независимость сегрегации негомологичных хромосом. Каждый член одной гомологичной пары входит в гамету в случайном сочетании с любым членом другой гомологичной пары.
Рис. 5. Митоз обеспечивает постоянство хромосомного состава клетки. Одна пара гомологичных хромосом (обозначена белым) происходит от одного из родителей, другая (окрашена) - от второго родителя. Диплоидная клетка имеет по две копии каждой хромосомы (общее число 2п). Перед митозом хромосомы удваиваются, и профаза, следовательно, начинается с состояния 4п. Два члена каждой пары разделяются на две отдельные хромосомы, которые затем расходятся в разные дочерние клетки. При этом восстанавливается диплоидное число 2п, так что дочерние клетки имеют тот же набор хромосом, что и родительская клетка.
Подытожим параллели между хромосомами и менделеевскими единицами наследования. Гены встречаются в аллельных парах - по одному аллелю от каждого родителя в каждой паре; диплоидный набор хромосом образуется из двух гаплоидных родительских наборов. Распределение неаллельных генов в гаметах происходит независимо; негомологичные хромосомы подвергаются независимой сегрегации. Критическое условие, заключающееся в том, чтобы каждая гамета получала полный гаплоидный набор, выполняется независимо от того, рассматриваем ли мы этот процесс как сегрегацию хромосом или как распределение элементарных факторов наследственности.
Гены располагаются в хромосомах
Только установив, что определенный ген всегда присутствует в определенной хромосоме, можно доказать, что гены находятся в хромосомах. Такое доказательство было получено благодаря свойствам одного варианта плодовой мушки Drosophila melanogaster, обнаруженного Морганом в 1910 г. Этот белоглазый самец появился спонтанно в линии мух с обычными красными глазами.
Поскольку обычно встречаются мухи с красными глазами, их назвали диким типом; белые же глаза - это мутантный фенотип. Событие, приводящее к возникновению мутантного фенотипа, представляет собой генетическое изменение,, называемое мутацией. В результате большинства мутаций (но не всех) функционирование соответствующего гена нарушается частично или полностью. Поэтому изучение мутаций, как правило, сводится к изучению неактивных аллелей. Иногда происходят обратные мутации (реверсии), т.е. такие изменения в генетическом материале, которые восстанавливают исходное состояние, - явление, называемое реверсией к дикому типу.
Рис. 6. В мейозе число хромосом уменьшается вдвое. На рисунке показано поведение одной пары гомологичных хромосом. Оба члена пары были удвоены перед началом профазы. Во время первого деления происходит спаривание гомологичных хромосом, а затем каждая пара расходится в разные клетки. Во время второго деления дуплицированные члены каждой пары расходятся в разные клетки, так что каждая гамета получает по одной копии. В клетке обычно находится несколько пар гомологичных хромосом, и члены каждой пары комбинируются между собой независимо друг от друга. Таким образом, подбор гомологичных хромосом (материнской и отцовской) в каждой гамете происходит случайно.
Мутацию white удалось локализовать в определенной хромосоме потому, что она оказалась связанной с полом. Обычно гомологичные пары хромосом при расхождении в мейозе образуют идентичные гаплоидные наборы. Однако у многих организмов, размножающихся половым путем, существует одно исключение из этого общего правила: самцы и самки могут иметь видимые различия в хромосомных наборах. Чаще всего у одного из полов одна хромосомная пара состоит из разных хромосом.
Такую пару называют половыми хромосомами, а остальные гомологичные пары - аутосомами. Хромосомные наборы двух полов можно записать следующим образом: 2А + XX и 2А + XY, где гаплоидный набор аутосом обозначают как А, а две половые хромосомы - как X и Х Пол с хромосомным набором 2А + XX называют гомогаметным; у него образуются только гаметы А + Х. Пол с набором 2А + Ч Х называют гетерогаметным, так как у него образуются в одинаковом количестве гаметы двух типов: А + Х и Б+Х. В результате случайного со единения гамет одного пола с гаметами другого пола постоянно сохраняется равное соотношение полов при образовании зигот. У Drosophila гомогаметным полом являются самки.
Хромосомы с красным аллелем (доминантным)
Хромосома с белым аллелем (рецессивным) Х Отсутствие аллеля в хромосоме (= рецессивному аллелю) О Красноглазая муха СЗ Белоглазая муха
Рис.7. Гены Х-хромосомы наследуются сцеплено с полом. Красная или белая окраска глаз у самца зависит только от Х-хромосомы, полученной им от матери. Фенотип самки зависит от того, получит ли она доминантный аллель от одного из родителей. При этом наблюдается характерный тип перекрестного наследования, сцепленного с полом, - от отца к дочерям, от матери к сыновьям (крисс-кросс).
Из законов Менделя следует, что результаты генетического скрещивания должны быть одинаковы независимо от того, кому из родителей принадлежит данный аллель. Но реципрокные скрещивания с признаком "белые глаза" у Drosophila дают различные результаты (рис.7).
Скрещивание белоглазый самец ч красноглазая самка дает лишь красноглазое потомство F1, что и можно было предсказать, если красный цвет доминантен, а белый рецессивен. Но в потомстве F2 все появившиеся белоглазые мухи оказались самцами. В реципрокном скрещивании красноглазые самцы ч белоглазые самки все самцы F1 были с белыми глазами, а все самки-с красными. При их скрещивании в потомстве F2 в равном соотношении появились белые и красные глаза у обоих полов.
Этот пример наследования строго обусловлен половыми хромосомами. Если аллели красных и белых глаз находятся в Х-хромосоме, и при этом Х-хромосома вообще не содержит локуса для окраски глаз, фенотип самца будет определяться единственным аллелем, находящимся в Х-хромосоме. Этот аллель перейдет ко всем дочерям, но ни один из сыновей его не получит. Данный случай является типичным примером наследования, сцепленного с полом.
Гены линейно выстроены вдоль хромосом
Независимая сегрегация хромосом, происходящая в мейозе, объясняет независимую комбинацию генов, расположенных в разных хромосомах. Но, как известно, общее число генетических факторов значительно больше, чем число хромосом. Следовательно, если все гены расположены в хромосомах, то каждая хромосома должна содержать много генов. Каковы же взаимоотношения между этими генами?
О стремительном темпе развития генетики в начале века свидетельствует тот факт, что в 1913 г., всего лишь через три года после сообщения о первом белоглазом мутанте, Стертевант (Sturtevant) сообщил об изучении наследования шести сцепленных с полом мутаций. В 1911 г. Морган (Morgan) показал, что каждый из этих факторов ведет себя в скрещиваниях так же, как красная и белая окраска глаз. Следовательно, каждый фактор должен располагаться в Х-хромосоме.
Некоторые из факторов оказались связанными между собой. Вопреки второму закону Менделя, доля родительских генотипов в F2 оказалась выше предполагаемой, что объяснялось пониженным образованием рекомбинантных типов в этом поколении. Тенденция некоторых признаков оставаться связанными, вместо того чтобы комбинироваться независимо, была названа сцеплением. На рис.8 показано, как измеряют сцепление.
Морган предположил, что причина генетического сцепления факторов - это "просто механический результат их локализации в одной хромосоме". Он предположил также, что образование генетических рекомбинантов можно отождествить с процессом кроссинговера, наблюдаемого в мейозе. В раннем мейозе, на стадии, когда четыре копии каждой хромосомы представлены в виде бивалента, между близко расположенными (конъюгировавшими) гомологичными парами происходит попарный перекрест генетического материала, названный хиазмой. Этот процесс схематически изображен на рис.9.
Забежим на несколько лет вперед. Только в 1931 г. было формально доказано, что рекомбинация обусловлена кроссинговером. У кукурузы и у дрозофилы были получены подходящие транслокации, при которых оторванная часть одной хромосомы прикрепилась к другой. Это позволяет отличить по внешнему виду хромосому с транслокацией от нормальной хромосомы. Как изображено на рис.10, в подобных скрещиваниях можно показать, что образование генетических рекомбинантов происходит только при физическом обмене между соответствующими областями хромосом.
Хромосомы изображены в виде окрашенных полосок. Гены гетерозиготного родителя обозначены черными буквами, гены родителя, рецессивного по двум признакам, цветными буквами. Это скрещивание относится к тому же типу, что и скрещивание, показанное на рис.4. В скрещивании, изображенном сверху, одна хромосома несет оба доминантных аллеля, другая - оба рецессивных (скрещивание с аллелями "в фазе притяжения"). Таким образом, родительские типы представляют собой АВ и ab, рекомбинантные типы-zli и аВ.
В скрещивании, изображенном снизу, одна хромосома гетерозиготы несет один доминантный и один рецессивный аллель, а другая хромосома несет противоположную комбинацию (скрещивание с аллелями "в фазе отталкивания"). Следовательно, родительские типы - это АЬ и аВ, рекомбинантные - АВ и аЪ. В каждом случае в потомстве наблюдается увеличение доли родительских типов (70%) и уменьшение доли рекомбинантных типов (30%) по сравнению с 50% для каждого типа, что ожидалось бы при независимой комбинации генов. Заметим, что в потомстве, полученном от этих скрещиваний, два родительских типа присутствуют в одинаковом количестве; одинаково и количество двух рекомбинантных типов. Сцепление в данном случае между А и В равно 30%, или 30 условным единицам карты.
Если вероятность образования хиазмы между двумя точками в хромосоме зависит от расстояния между ними, гены, расположенные ближе друг к другу, будут наследоваться вместе. По мере увеличения расстояния между двумя генами возрастает и вероятность кроссинговера между ними. Таким образом, если рекомбинация обусловлена кроссинговером, гены, находящиеся близко друг к другу, должны быть тесно сцеплены, причем генетическое сцепление будет уменьшаться по мере физического удаления. И наоборот, генетическое сцепление можно использовать как меру физического расстояния.
Исходя из представления о том, что гены одной хромосомы сцеплены между собой, Стертевант (Sturtevant) предложил использовать частоту рекомбинации в качестве единицы расстояния на карте для измерения относительной локализации генов. Эта единица расстояния выражается как процент рекомбинации:
Расстояние измеряется в условных единицах карты; одна единица карты (сантиморганида) соответствует 1% рекомбинантных потомков. Основные закономерности рекомбинации были установлены при изучении всех шести сцепленных с полом признаков вместе. Индивидуальные расстояния на карте аддитивны. Иными словами, если два гена А и В находятся на расстоянии 10 ед. друг от друга, а расстояние от в до С равно 5 ед., то расстояние между А и С, полученное при прямом измерении, будет близко к 15. Поэтому гены можно расположить в линейном порядке.















