10494 (646554), страница 2

Файл №646554 10494 (Регуляция биосинтеза белков на этапе трансляции) 2 страница10494 (646554) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Механизм «узнавания» аномальных или нефункциональных белков неизвестен, скорее всего, важную роль в нем играют особенности третичной структуры белков, и замена даже одной аминокислоты сильно снижает устойчивость белка к внутриклеточному протеолизу. Последнее обстоятельство может существенно мешать получению микроорганизмов-сверхпродуцентов, у которых повышенное образование целевого продукта обусловлено мутациями по соответствующим ферментам. Такие ферменты будут восприниматься системой узнавания как аномальные и подвергаться протеолизу, что тормозит биосинтетические процессы, а иногда и рост микроорганизма. Специфический протеолиз может дополнять регуляцию по механизму катаболитной репрессии. Например, у некоторых дрожжей глюкоза не только репрессирует синтез определенных ферментов, но и стимулирует их протеолитическую деградацию, по-видимому, за счет индукции или активации соответствующей протеиназы. Решающую роль играет протеолиз в так называемой SOS‑регуляции, т.е. активации SOS‑регулона, включающего около 20 генов, которые индуцируются в ответ на некоторые повреждения ДНК и образуют продукты, участвующие в ее репарации. Среди этих продуктов присутствует белок RecA, участвующий в ряде клеточных процессов является более «быстродействующим» механизмом и раньше откликается на изменение внешних условий, чем регуляция биосинтеза этих посредников. Однако, как мы уже отмечали, оба уровня регуляции необходимы для координированного управления биохимическими процессами в клетке. В свою очередь, процессы регуляции активности белковых посредников можно разделить на две большие группы: регуляция активности путем обратимой ковалентной модификации посредника и регуляция активности без ковалентной модификации посредника.

Регуляция активности белковых посредников путем их ковалентной модификации

Отличие этого механизма регуляции от посттрансляционной модификации состоит в обратимости процесса и отсутствии изменения длины полипептидной цепи. Кроме того, и это особенно важно отметить, обе формы – модифицированная и немодифицированная – активны, хотя и различаются по величине активности н/или по регуляторным свойствам.

У эукариот самым распространенным способом модификации является фосфорилироеание. Один из наиболее изученных примеров – процесс синтеза и распада гликогена.

Фосфор ил ирование ферментов, участвующих в синтезе и распаде гликогена, осуществляется киназами, которые сами активируются сАМР. Как уже отмечалось, концентрация сАМР в клетке обратно пропорциональна концентрации АТР. Следовательно, потребность в энергии приводит к фосфори-лированию указанных ферментов, т.е. к стимуляции гидролиза гликогена и торможению его синтеза. Дополнительная стимуляция гидролиза достигается за счет активирующего эффекта AMP, который накапливается при снижении энергетического заряда клетки. Напротив, при накоплении глюкозо‑6‑фосфата, что свидетельствует об активном протекании энергетических процессов, гидролиз гликогена тормозится.

У прокариот, как показано в последнее время, модификация белков путем их фосфорилирования также распространена достаточно широко. Так, в процессе инициации спорообразования у бацилл активируется транскрипция ряда генов, кодирующих белки, часть которых является протеинкиназами, а часть – акцепторами фосфата. Один из последних белков способен связываться с ДНК и, по-видимому, является регулятором транскрипции. Фосфорилирова7 ние влияет на его регуляторные свойства. Этот же белок необходим для развития у клеток Bacillus subtilis состояния компетентности. Путем фосфорилирования регулируется также активность некоторых белков у Khizobium, участвующих в фиксации азота, а также в транспорте ди‑и трикарбоновых кислот. Регуляция транспорта Сахаров путем фосфорилирования компонентов фосфотрансферазной системы обнаружена у Escherichia coli. Вообще же у этой бактерии найдено около 170 белков, способных фосфорилироваться.

Однако наиболее изученным примером регуляции путем ковалентной модификации является аденилирование и уридилирование ферментов в системе регуляции активности глутаминсинтетазы.

Указанная регуляция активности ГС дополняется регуляцией на уровне биосинтеза фермента: немодифицированный белок РП через посредство других специальных белков подавляет транскрипцию локусов ГС. В свою очередь, эти белковые регуляторы могут фосфорилироваться с участием специфических протеинкиназ и изменять свою регуляторную активность.

Все эти события – яркий пример каскадной регуляции – наиболее эффективного механизма регуляции сложных метаболических путей, каким и является, в частности, азотный метаболизм.

Регуляция активности белковых посредников путем нековаленткого взаимодействия с эффекторами

1. Взаимодействие с субстратами. Ферменты, активность которых регулируется субстратом, должны иметь несколько активных центров, сходных по природе и взаимодействующих между собой. Здесь возможны два случая:

а) присоединение первой молекулы субстрата облегчает присоединение последующих молекул, и скорость реакции растет по экспоненциальному закону. График зависимости начальной скорости реакции от концентрации субстрата имеет S‑образную форму;

б) присоединение первой молекулы субстрата затрудняет присоединение последующих молекул.

Аналогичные механизмы регуляции действуют при трансмембранном транспорте некоторых субстратов.

2. Взаимодействие с продуктами и другими эффекторами, отличными от субстратов. Ферменты, активность которых регулируется по этому механизму, должны иметь различающиеся по природе активные центры: каталитический и регуляторный. Эти центры обычно размещены на разных субъединицах фермента, причем связывание эффектора с регуляторным центром влияет на конформацию каталитического центра и изменяет сродство к субстрату, которое, как правило, снижается. При этом возможны разные обстоятельства:

а) в анаболических процессах конечный продукт метаболического пути, накапливаясь выше определенного уровня, подавляет свой биосинтез, ингибируя активность первого фермента данного пути;

б) в катаболических путях метаболизма отрицательными эффекторами часто служат соединения, являющиеся аккумуляторами энергии, а другие компоненты аденилатной системы могут выступать в качестве положительных эффекторов. Таким образом, активность данных ферментов зависит от «энергетического заряда» клетки;

в) амфиболические ферменты могут регулироваться с помощью обоих механизмов;

г) в разветвленных биосинтетических путях подавление одним из конечных продуктов активности фермента, катализирующего начальные этапы процесса, приводило бы к дефициту других продуктов данного пути. Поэтому необходима особая организация регуляторных процессов. Существуют две основные возможности.

Во-первых, образование изоферментов, катализирующих начальную стадию пути, активность каждого из которых избирательно подавляется только одним из конечных продуктов. Примером может служить биосинтез ароматических аминокислот у Escherichia coli, в котором конечные продукты – тирозин, триптофан и фенилаланин – подавляют каждый активность одной из альдолаз, катализирующих первую реакцию пути. Во-вторых, использование ферментов, имеющих несколько взаимодействующих регуляторных центров, каждый из которых специфичен только для одного из эффекторов. По отдельности они не оказывают существенного влияния на активность фермента, а при их совместном действии активность подавляется. Это так называемое согласованное, или мультивалентное ингибирование. Например, активность аспартаткиназы у Escherichia coli подавляется только сочетанием лизина, метионина и лейцина. Для глутаминсинтетазы обнаружено восемь кумулятивных эффекторов: аланин, глицин, гистидин, триптофан, ЦТР, AMP, карбамоилфосфат, глюкозамин‑6‑фосфат.

Регуляция активности белковых посредников путем пространственного разобщения и взаимодействия с мембранами

Механизмы первого типа более распространены у эукариот в связи с локализацией ферментов в субклеточных органеллах: митохондриях, лизосомах и т.д. Однако и в клетках прокариот возможны определенные виды компартментации:

а) часть ферментного аппарата прокариот локализована в периплазматическом пространстве. Таким образом, создается возможность регуляции активности ферментов путем управления скоростью проникновения в «отсек» субстратов или выхода из него продуктов;

б) ферменты, катализирующие серию последовательных реакций, могут формировать «ансамбль», локализованный либо в цитоплазме, либо в цитоплазматической мембране. Продукты, образуемые на предыдущей стадии, «подхватываются» последующим ферментом без освобождения в среду.

Для регуляторного действия конечного продукта доступен только последний фермент, но он может передавать эффект на предыдущие ферменты за счет кооперативных взаимодействий. Существует представление о «метаболоне», т.е. комплексе ферментов, закрепленных на «подложке». Каталитические свойства в этом случае проявляются внутри ансамбля, а подложка реагирует на регуляторное действие эффекторов. Например, ни один из ферментов может не реагировать на данный эффектор, но в ансамбле, за счет конформационных изменений подложки, они становятся к нему чувствительными.

Важную роль в регуляции активности ферментов может играть их взаимодействие с мембранами. В мембранно-связанном состоянии физико-химические свойства ферментов изменяются. Это явление называется аллотопия. Гидрофобные взаимодействия мембранных липидов и белков могут переводить последние в неактивное состояние, а электростатические взаимодействия, напротив, вызывать активацию белков. В свою очередь, сила электростатического взаимодействия липидов и белков зависит от внутриклеточной концентрации электролитов, а следовательно, от состава среды, окружающей клетку, и от физиологического статуса последней. Таким образом, для регуляции ферментов по этому механизму существуют широкие возможности, хотя конкретные механизмы в силу труднопреодолимых методических препятствий пока изучены мало.

Характеристики

Тип файла
Документ
Размер
155,13 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее