10454 (646526), страница 2

Файл №646526 10454 (Работа ионных насосов) 2 страница10454 (646526) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Ионные каналы

Мембранная теория, о которой было рассказано в гл. 4, объяснив ряд классических экспериментальных данных, поставила перед биологами целый ряд новых вопросов. Чем обусловлена проницаемость мембраны для ионов калия и натрия? Каким способом мембранный потенциал меняет проницаемость мембраны? Какие процессы лежат в основе уравнений Ходжкина – Хаксли?

Вы уже знаете, что проводимость клеточных мембран в основном определяется содержащимися в них белками, образующими в мембране «поры», через которые могут проходить небольшие молекулы. Те поры, через которые проходят ионы калия, назвали калиевыми ионными каналами, а те, через которые проходят ионы натрия, – натриевыми ионными каналами.

Ионные каналы образованы особым классом белковых молекул. Эти молекулы умеют отличать «свои» ионы, открывают или закрывают путь для ионов под действием потенциала на мембране и т.д. Таким образом, это еще один класс белковых машин, столь же важных, как и ионные насосы.

В начале 70-х годов английский биофизик Б. Хилле исследовал прохождение через натриевые и калиевые каналы ионов разного размера. Ионы, которые имели размер больше критического, не проходили через данный канал. Хилле выяснил, что диаметр калиевого канала равен примерно 0,3 нм, а у натриевого канала – чуть больше. На основании ряда таких опытов сложилось следующее приближенное представление о ионных каналах,

Ионный канал можно представить себе как трубку определенного диаметра, пересекающую мембрану. На одном конце такая трубка имеет «заслонку» или «ворота», положением которых управляет потенциал. Заслонка заряжена и поэтому при изменении потенциала может открывать вход в канал. Иными словами, считается, что ворота каналов представляют собой какую-то заряженную группу атомов, которая может смещаться в электрическом поле, открывая при этом дорогу для ионов калия или натрия. Смещение такой заряженной группы в молекуле белка должно регистрироваться в виде кратковременного небольшого электрического тока. И действительно, в 1973 г. Р. Кейнесу и Е. Рохасу удалось зарегистрировать этот ток в натриевых каналах. Чтобы более сильный ток натрия не замаскировал этот слабый воротный ток, натриевые каналы во время опытов были заблокированы тетродотоксином.

При изучении натриевых каналов было показано, что ворота и механизм инактивации расположены в разных участках канала. Фермент проназа, введенный внутрь гигантского аксона кальмара, «откусывает» часть натриевого канала, торчащую из мембраны. После такой процедуры канал продолжает открывать ворота под действием деполяризации но не инактивируется. Таким образом, предсказание модели X–X о наличии двух обособленных процессов – активации и инактивации – получило четкое экспериментальное подтверждение.

Удалось определить также плотность натриевых каналов в мембране. Это было сделано разными способами. Так, Хилле, который оценил диаметры каналов, рассчитал, какое сопротивление должен иметь один такой канал, и получил значение порядка 1010 Ом. Зная удельное сопротивление мембраны, можно найти плотность каналов. Другой метод состоял в том, что определялось число молекул тетродотоксина, необходимое для полной блокады натриевой проводимости. Оба метода дали очень близкие результаты. Оказалось, что на квадратном микрометре мембраны находятся всего несколько десятков каналов. Это очень мало, если учесть, что на той же площади располагаются несколько миллионов молекул липидов. «Молекулярное сито» оказалось похожим на решето, в котором пробито всего несколько дырочек.

Сначала думали, что существуют всего два типа ионных каналов – калиевые и натриевые, но оказалось, что это не так. Например, были открыты кальциевые каналы. Вначале их обнаружили у пресноводных животных – инфузорий и моллюсков. Это казалось естественным: в пресной воде обычно больше ионов кальция, чем натрия. Однако в дальнейшем оказалось, что кальциевые каналы есть и у позвоночных животных. Оказалось также^ что и сами натриевые каналы устроены не все одинаково. Например, в клетках сердца эмбрионов млекопитающих обнаружены натриевые каналы, которые не блокируются тетродотоксином. По мере созревания организма эти каналы заменяются другими – тетродочувствительными. Калиевых каналов тоже оказалось много сортов. Затем были открыты хлорные каналы и т.д. В конце концов, каналов наоткрывали почти столько же, сколько элементарных частиц. В одной и той же клетке сердца имеется много разных сортов ионных каналов и открываются все новые.

Развитие методик позволило перейти к изучению свойств отдельных каналов. Для этого микроэлектрод не вводят в мембрану, а плотно прижимают к ней. Так как каналы расположены далеко друг от друга, удается так прижать электрод, что под ним находится всего один канал. В таких работах удается получить ответы, например, на такой вопрос, сколько состояний есть у канала: «открыто» и «закрыто» или еще какие-то? В этих работах было обнаружено, что поведение одиночного канала является вероятностным. При данном уровне мембранного потенциала у канала есть определенная вероятность открыться на некоторое время. При другом уровне ПП эта вероятность меняется.

Теперь мы можем обсудить такой вопрос: чем определяется, например, рост мембранной проницаемости калия от времени при скачке мембранного потенциала? Если бы все каналы были одинаковыми и детерминировано управлялись бы электрическим полем на мембране, то постепенного изменения проницаемости не наблюдалось бы – она менялась бы скачком. Тогда все процессы возбуждения протекали бы совершенно иначе. Плавное изменение проницаемости можно объяснить либо присутствием в мембране каналов разного сорта с разной чувствительностью к МП, либо вероятностным характером работы каналов, который и был обнаружен экспериментаторами.

Таким образом, уравнения Ходжкина – Хаксли – это такие же макроскопические уравнения, как уравнение Менделеева – Клапейрона. И как за уравнением газового состояния стоят молекулярно-кинетическая теория и статистическая физика, так и за уравнениями X–X сюит статистическая физика каналов, которая сейчас энергично развивается.

Другие современные направления молекулярной биологии – это изучение устройства одиночных молекулярных машин, их деталей и их взаимодействия, выяснение того, какие атомные группы играют роль ворот и т.д. И, наконец, еще одно направление – генетика ионных каналов.

Если еще недавно предполагалось, что ионный канал – это стабильная машина, которая встраивается в мембрану н функционирует достаточно долго, то теперь выяснилось, что белки-каналы нервных клеток функционируют всего около суток, а потом разрушаются и на их место доставляются новые каналы. Синтезируются эти канальные белки, как и другие белки, специальными молекулярными машинами – рибосомами. «Команду», какой именно белок синтезировать, рибосомы получают от особых молекул – молекул информационной рибонуклеиновой кислоты. Английскому биологу Миледи удалось поставить такой красивый опыт. Он выделил из нервных клеток молекулы РНК и ввел их в яйцеклетку. В норме эти яйцеклетки невозбудимы, т.е. не реагируют на деполяризацию ПД. Однако те яйцеклетки, в которые ввели РНК нейронов, приобрели возбудимость и стали отвечать на раздражение такими же импульсами, как нервные клетки. Это означает, что по РНК нейронов на рибосомах яйцеклеток были синтезированы белки ионных каналов, эти белки сумели встроиться в мембрану яйцеклетки и нормально в ней работали.

Было обнаружено, что в мотонейронах позвоночных на теле клетки в основном находятся натриевые каналы, а на дендритах – кальциевые. Такое же распределение каналов обнаружили и на клетках Пуркинье – крупных нейронах мозжечка. Это означает, что белки-каналы, вырабатываемые клеткой, не просто встраиваются в мембрану нейрона где попало, а каналы разного сорта транспортируются в нужное место.

До сих пор речь шла о каналах, которые открываются и закрываются под действием электрического поля на мембране. Однако существуют и каналы совершенно иного сорта, которые управляются химическими веществами. Уже давно были известны каналы постсинаптической мембраны, которые открываются под действием медиатора. Но сейчас выяснено, что сходными свойствами обладают и каналы, не имеющие отношения к синапсам, причем они могут реагировать не на вещества, поступающие к наружной поверхности клетки извне, а на те вещества, которые вырабатываются внутри клетки или накапливаются в ней.

Например, существуют кальциевые каналы, лишенные инактивации. При деполяризации мембраны через них в клетку все время поступает поток ионов кальция. Если концентрация кальция в клетке достигает некоторого достаточно высокого уровня, то канал закрывается. Эти каналы можно закрыть и с помощью электрического поля, гиперполяризуя мембрану; таким образом, это каналы, так сказать, «двойного подчинения». Обнаружены и калиевые каналы, управляемые концентрацией кальция.

Для других кальциевых каналов показано, что они чувствительны к концентрации особого вещества цАМФ. Это вещество управляет рядом внутриклеточных процессов. Рост концентрации цАМФ в некоторых нейронах приводит к открыванию каналов и деполяризации клетки. Одним из первых такие каналы обнаружил советский биофизик Е.А. Либерман.

Таким образом, в последние годы стало ясно, что есть много типов каналов, что каналы – это динамические образования и, наконец, что существует много механизмов, управляющих работой каналов: это и электрические поля на мембране, и разные химические вещества.

В каждой клетке есть гены, ответственные за белки-каналы, но в одних клетках эти гены неактивны, а в других они функционируют. Так электрические процессы в клетке оказываются связанными с работой ее генетического аппарата. Клетка может не только управлять работой каналов изнутри, она может и модифицировать их, менять их свойства посредством биохимических реакций. Такие процессы происходят например, при обучении животного.

Характеристики

Тип файла
Документ
Размер
124,71 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее