10244 (646404), страница 2
Текст из файла (страница 2)
Термин «генетическая инженерия» появился в научной литературе в 1970 г., а генетическая инженерия как самостоятельная дисциплина - в декабре 1972 г., когда П. Берг и сотрудники Стенфордского университета (США) получили первую рекомбинантную ДНК, состоящую из ДНК вируса SV40 и бактериофага λdvgal. В нашей стране благодаря развитию молекулярной генетики и молекулярной биологии, а также правильной оценке тенденций развития современной биологии 4 мая 1972 г. в Научном центре биологических исследований Академии наук СССР в г. Пущино (под Москвой) состоялось первое рабочее совещание по генетической инженерии. С этого совещания и ведется отсчет всех этапов развития генетической инженерии в России.
Бурное развитие генетической инженерии связано с разработкой новейших методов исследований, среди которых необходимо выделить основные:
Расщепление ДНК (рестрикция) необходимо для выделения генов и манипуляций с ними;
гибридизация нуклеиновых кислот, при которой, благодаря их способности связываться друг с другом по принципу комплементарности, можно выявлять специфические последовательности ДНК и РНК, а также совмещать различные генетические элементы. Используется в полимеразной цепной реакции для амплификации ДНК in vitro;
клонирование ДНК - осуществляется путем введения фрагментов ДНК или их групп в быстрореплицирующиеся генетические элементы (плазмиды или вирусы), что дает возможность размножать гены в клетках бактерий, дрожжей или эукариот;
определение нуклеотидных последовательностей (секвенирование) в клонируемом фрагменте ДНК. Позволяет определить структуру генов и аминокислотную последовательность кодируемых ими белков;
химико-ферментативный синтез полинуклеотидов - часто необходим для целенаправленной модификации генов и облегчения манипуляций с ними.7
Б. Глик и Дж. Пастернак (2002) описали следующие 4 этапа экспериментов с рекомбинантной ДНК:
1. Из организма-донора экстрагируют нативную ДНК (клонируемая ДНК, встраиваемая ДНК, ДНК-мишень, чужеродная ДНК), подвергают ее ферментативному гидролизу (расщепляют, разрезают) и соединяют (лигируют, сшивают) с другой ДНК (вектор для клонирования, клонирующий вектор) с образованием новой рекомбинантной молекулы (конструкция «клонирующий вектор - встроенная ДНК»).
2. Эту конструкцию вводят в клетку-хозяина (реципиента), где она реплицируется и передается потомкам. Этот процесс называется трансформацией.
3. Идентифицируют и отбирают клетки, несущие рекомбинантную ДНК (трансформированные клетки).
4. Получают специфический белковый продукт, синтезированный клетками-хозяевами, что является подтверждением клонирования искомого гена.8
3. Клонирование и биотехнология в животноводстве
Клонирование - совокупность методов, использующихся для получения клонов. Клонирование многоклеточных организмов включает пересадку ядер соматических клеток в оплодотворенное яйцо с удаленным пронуклеусом. Дж. Гердон (1980) впервые доказал возможность переноса ДНК путем микроинъекций в пронуклеус оплодотворенной яйцеклетки мыши. Затем Р. Бринстер и Др. (1981) получили трансгенных мышей, которые синтезировали большое количество тимидинкиназы NSV в клетках печени и почек. Это было достигнуто путем инъекции гена тимидинкиназы NSV под контролем промотора гена металлотионеина-I.
В 1997 г. Уилмут и др. клонировали овцу Долли методом переноса ядра от взрослой овцы. Они взяли от 6-летней овцематки породы финский дорсет эпителиальные клетки молочной железы. В культуре клеток или в яйцеводе с наложенной лигатурой их культивировали в течение 7 дней, а потом эмбрион в стадии бластоцисты имплантировали в «суррогатную» мать шотландской черноголовой породы. В эксперименте из 434 яйцеклеток была получена только одна овца Долли, которая была генетически идентичной донору породы финский дорсет.
Клонирование животных с помощью переноса ядер из дифференцированных тотипотентных клеток иногда ведет к снижению жизнеспособности. Не всегда клонированные животные являются точной генетической копией донора из-за изменений наследственного материала и влияния условий среды. У генетических копий варьирует живая масса и бывает различный темперамент.9
Открытия в области структуры генома, сделанные в середине прошлого века, дали мощный толчок к созданию принципиально новых систем направленного изменения генома живых существ. Были разработаны методы, позволяющие конструировать и интегрировать в геном чужеродные генные конструкции. Одним из таких направлений является интеграция в геном животных генных конструкций, связанных с процессами регуляции обмена веществ, что обеспечивает последующее изменение и ряда биологических и хозяйственно полезных признаков животных.
Животных, несущих в своем геноме рекомбинантный (чужеродный) ген, принято называть трансгенными, а ген, интегрированный в геном реципиента, - трансгеном. Благодаря переносу генов у трансгенньгх животных возникают новые признаки, которые при селекции закрепляются в потомстве. Так создают трансгенные линии.10
Одни из важнейших задач сельскохозяйственной биотехнологии -выведение трансгенных животных с улучшенной продуктивностью и более высоким качеством продукции, резистентностью к болезням, а также создание так называемых животных - биореакторов - продуцентов ценных биологически активных веществ.11
С генетической точки зрения особый интерес представляют гены, кодирующие белки каскада гормона роста: непосредственно гормон роста и рилизинг-фактор гормона роста.
По данным Л. К. Эрнста, у трансгенных свиней с геном рилизинг-фактора гормона роста толщина шпика была на 24,3 % ниже контроля. Существенные изменения отмечены по уровню липидов в длиннейшей мышце спины. Так, содержание общих липидов в этой мышце у трансгенных свинок было меньше на 25,4 %, фосфолипидов - на 32,2, холестерина - на 27,7 %.
Таким образом, трансгенные свиньи характеризуются повышенным уровнем ингибирования липогенеза, что представляет несомненный интерес для практики селекции в свиноводстве.
Потери в животноводстве, вызванные различными болезнями, достаточно велики, поэтому все более важное значение приобретает селекция животных по резистентности к болезням, вызываемых микроорганизмами, вирусами, паразитами и токсинами. Ведутся исследования, направленные на получение трансгенных животных, резистентных к маститу за счет повышения содержания белка лактоферина в тканях молочной железы.
Очень важно использование трансгенных животных в медицине и ветеринарии для получения биологически активных соединений за счет включения в клетки организма генов, вызывающих у них синтез новых белков.12
4. Практическое значение и перспективы генетической инженерии
Промышленная микробиология - развитая отрасль промышленности, во многом определяющая сегодняшнее лицо биотехнологии. И производство практически любого препарата, сырья или вещества в этой отрасли сейчас так или иначе связано с генетической инженерией. Дело в том, что генетическая инженерия позволяет создавать микроорганизмы - сверхпродуценты того или иного продукта. С ее вмешательством это происходит быстрее и эффективнее, чем путем традиционной селекции и генетики: в результате экономятся время и деньги. Имея микроорганизм сверхпродуцент, можно получить больше продукции на том же оборудовании без расширения производства, без дополнительных Капитальных вложений. К тому же микроорганизмы растут в тысячу раз быстрее, чем растения или животные.
Например, с помощью генетической инженерии можно получить микроорганизм, синтезирующий витамин В2 (рибофлавин), используемый в качестве кормовой добавки в рационах животных. Его производство данным способом эквивалентно строительству 4-5 новых заводов по получению препарата обычным химическим синтезом.
Особо широкие возможности появляются у генетической инженерии при производстве ферментов-белков - прямых продуктов работы гена. Увеличить производство фермента клеткой можно, либо введя в нее несколько генов этого фермента, либо улучшив их работу путем установки перед ними более сильного промотора. Так, продукция фермента β-амилазы в клетке была увеличена в 200 раз, а лигазы - в 500 раз.13
В микробиологической промышленности кормовой белок получают обычно из углеводородов нефти и газа, древесных отходов. 1 т кормовых дрожжей дает дополнительно до 35 тыс., штук яиц и 1,5 т куриного мяса. В нашей стране производятся более 1 млн. т кормовых дрожжей в год. Намечается использовать ферментеры производительностью до 100 т/сут. Задача генетической инженерии в этой области - улучшение аминокислотного состава кормового белка, его питательности путем введения в дрожжи соответствующих генов. Ведутся работы и по улучшению качества дрожжей для пивоваренной промышленности.
С генетической инженерией связаны надежды на расширение ассортимента микробиологических удобрений и средств защиты растений, увеличение производства метана из бытовых и сельскохозяйственных отходов. Путем выведения микроорганизмов, более эффективно разлагающих различные вредные вещества в воде и почве, можно существенно повысить эффективность борьбы с загрязнением окружающей среды.
Рост народонаселения на Земле, как и десятилетия назад, опережает прирост производства сельскохозяйственной продукции. Следствие этого - хроническое недоедание, а то а просто голод среди сотен миллионов людей. Производство удобрений, механизация, традиционная селекция животных и растений - все это составляло основу так называемой «зеленой революции», которая себя не совсем оправдала. В настоящее время изыскивают другие, нетрадиционные пути повышения эффективности сельскохозяйственного производства. Большие надежды в этом деле возлагаются на генетическую инженерию растений. Только с ее помощью можно радикальным образом расширить границы изменчивости растения в сторону каких-либо полезных свойств, передав ему гены от других (возможно, неродственных) растений и даже гены животного или бактерии. С помощью генетической инженерии можно определять присутствие вирусов в сельскохозяйственных растениях, предсказывать урожайность, получать растения, способные противостоять различным неблагоприятным факторам внешней среды. Сюда относят устойчивость к гербицидам (средствам борьбы против сорняков), инсектицидам (средствам борьбы против насекомых-вредителей), устойчивость растений к засухе, к засолению почв, фиксации растениями атмосферного азота и т. п. В довольно длинном перечне свойств, которыми люди хотели бы наделить сельскохозяйственные культуры, не последнее место занимает устойчивость к веществам, применяемым против сорняков и вредных насекомых. К сожалению, эти необходимые средства пагубно влияют и на полезные растения. Генетическая инженерия может существенно помочь в решении этих вопросов.
Сложнее обстоит дело с повышением устойчивости растений к засухе и засоленности почв. Есть дикие растения, которые хорошо переносят и то и другое. Казалось бы, можно взять их гены, определяющие эти формы устойчивости, пересадить культурным растениям - и проблема решена. Но за эти признаки отвечают несколько генов, и пока не известно, какие именно.14
Одна из самых волнующих проблем, которую пытается решить генетическая инженерия, - фиксация растениями атмосферного азота. Азотные удобрения - залог высокой урожайности, так как азот необходим растениям для полноценного развития. Ныне в мире производят более 50 млн. т азотных удобрений, расходуя при этом большое количество электроэнергии, нефти и газа. Но только половина этих удобрений усваивается растениями, остальная вымывается из почвы, отравляя окружающую среду. Есть группы растений (бобовые), которые обычно берут азот не из почвы. На корнях бобовых поселяются клубеньковые бактерии, которые усваивают азот прямо из воздуха.
Как и растения, дрожжи - эукариотический организм, и добиться в них работы генов азотфиксации было бы важным этапом на пути к намеченной цели. Но пока гены в дрожжах не заработали, причины этого интенсивно изучают.
Благодаря генетической инженерии неожиданно переплетаются интересы животноводства и медицины.
В случае пересадки корове гена интерферона (лекарственного препарата, очень эффективного в борьбе с гриппом и рядом других заболеваний), из 1 мл сыворотки можно выделить 10 млн. ед. интерферона. Аналогичным способом можно получить целый ряд биологически активных соединений. Таким образом, животноводческая ферма, производящая медицинские препараты, - явление не столь уж фантастическое
С помощью метода генетической инженерии были получены микроорганизмы производящие гомосерин, триптофан, изолейцин, треонин, которых не хватает в белках растений, идущих на корм животным. Несбалансированное по аминокислотам кормление снижает их Продуктивность и ведет к перерасходу кормов. Таким образом, производство аминокислот - важная народнохозяйственная проблема. Новый сверхпродуцент треонина производит эту аминокислоту в 400-700 раз более эффективно, чем исходный микроорганизм
1 т лизина сбережет десятки тонн кормового зерна, а 1 т треонина - 100 т. Добавки треонина улучшают аппетит коров и повышают надои молока. Добавка смеси лизина с треонином к кормам в концентрации всего 0,1 % позволяет экономить до 25 % Кормов.
С помощью генетической инженерии можно осуществлять и мутационный биосинтез антибиотиков. Суть его сводится к тому, что в результате целенаправленных изменений в гене антибиотика получается не законченный продукт, а некий полуфабрикат. Подставляя к нему те или иные физиологически активные компоненты, можно получить целый набор новых антибиотиков. Ряд биотехнологических фирм Дании и СПIА уже выпускают генно-инженерные вакцины против поносов у сельскохозяйственных животных.
Уже производятся, проходят клинические испытания или активно разрабатываются следующие препараты: инсулин, гормон роста, интерферон, фактор VIII, целый ряд противовирусных вакцин, ферменты для борьбы с тромбами (урокиназа и тканевой активатор плазминогена), белки крови и иммунной системы организма. Изучаются молекулярно-генетические механизмы возникновения раковых заболеваний. Кроме того, разрабатываются методы диагностики наследственных заболеваний и пути их лечения, так называемая генотерапия. Так, например, ДНК -диагностика делает возможным раннее выявление наследственных дефектов и позволяет диагностировать не только носителей признака, но и гетерозиготных скрытых носителей, у которых фенотипически данные признаки не проявляются. В настоящее время уже разработана и широко применяется генная диагностика дефицита лейкоцитарной адгезии и дефицит уридинмонофосфатсинтезы у крупного рогатого скота.
Следует обратить внимание на то, что все методы изменения наследственности таят в себе и элемент непредсказуемости. Многое зависит от того, с какими целями проводятся такие исследования. Этика науки требует, чтобы основу эксперимента по направленному преобразованию наследственных структур составляло безусловное стремление сохранить и упрочить наследственное достояние полезных видов живых существ. При конструировании генетически новых органических форм должна быть поставлена цель улучшения продуктивности и резистентности животных, растений и микроорганизмов, являющихся объектами сельского хозяйства. Результаты должны содействовать укреплению биологических связей в биосфере, оздоровлению внешней среды.15
5. Значение и задачи биотехнологии
В исследованиях по биотехнологии разрабатываются методы изучения генома, идентификации генов и способы переноса генетического материала. Одно из главных направлений биотехнологии - генетическая инженерия. Генно-инженерными методами создаются микроорганизмы - продуценты биологически активных веществ, необходимых человеку. Выведены штаммы микроорганизмов, продуцирующих незаменимые аминокислоты, которые необходимы для оптимизации питания сельскохозяйственных животных.













