10075 (646298), страница 3

Файл №646298 10075 (Молекулярные основы наследственности) 3 страница10075 (646298) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

ДНК - не единственная нуклеиновая кислота, обнаруживаемая в клетке. Близкородственные молекулы - рибонуклеиновые кислоты - отличаются от ДНК в основном тем, что вместо дезоксирибозы содержат рибозу и чаще имеют одноцепочечную структуру.

Расшифровка структуры ДНК и установление ее центральной роли в наследственности увенчали накопленные наукой данные и позволили генетике из статистической и феноменологической науки превратиться в науку с преобладанием химических и молекулярных направлений развития. Незамедлительная бурная реакция ученых на открытие двойной спирали свидетельствовала об ее адекватности. Модель структуры ДНК не только соответствовала химическим и физическим данным, но и полностью отвечала функциям, присущим генетическому материалу. В линейной последовательности четырех пуринов и пиримидинов могло быть закодировано огромное количество информации, и в принципе эта структура могла обеспечить свою собственную репликацию. Расшифровка структуры ДНК проливала свет на самые разные аспекты биологии и создавала основу для объяснения многих разноречивых данных, полученных ранее. Она обеспечила фундаментальную целостность при интерпретации огромного многообразия жизненных форм. Раз и навсегда наследственность связывалась с определенной молекулярной структурой.

Проблемы механизмов переноса, перераспределения и экспрессии генетических признаков, долгое время не находившие решения, с начала 50-х годов перешли на молекулярный и химический уровни. Как реплицируются и рекомбинируют молекулы ДНК? Каким образом они сохраняются в последующих поколениях? Каким способом информация, закодированная в ДНК, обеспечивает образование фенотипических продуктов - белков? Как регулируется считывание информации, закодированной в ДНК, в процессе роста клеток или развития организма и при других физиологических состояниях? Как нарушаются эти процессы при заболеваниях? Эти и еще многие другие вопросы стояли в центре молекулярно-генетических исследований в течение последних 35 лет. Бурный прогресс в первые 20 из них был достигнут благодаря использованию систем прокариот и связан с идентификацией молекулярных структур, участвующих в процессах хранения, поддержания, передачи и использования генетической информации.

Перенос генетической информации в клетке

Информационные взаимоотношения между ДНК, РНК и белками теперь точно установлены. Репликация, с помощью которой создаются идентичные копии родительской молекулы ДНК, обеспечивает генетическую непрерывность в ряду поколений. Транскрипция ДНК с образованием РНК опосредует трансляцию этой информации на уровень белков. Итак, ДНК выполняет две основополагающие функции. Первая-это осуществление своей собственной репликации. Вторая - это формирование фенотипа через образование молекул РНК, участвующих в трансляции информации, содержащейся в ДНК, на язык белков. И, насколько это известно, только у эукариот информация может передаваться в обратном направлении, от РНК к ДНК, посредством процесса, именуемого обратной транскрипцией.

В основе переноса информации от ДНК к РНК или от РНК к ДНК лежит универсальная способность нуклеиновых кислот служить матрицей. Нуклеиновые кислоты направляют сборку идентичных или родственных молекул и непосредственно участвуют в процессе синтеза белка. Насколько известно, информация не передается от белков к нуклеиновым кислотам. Однако белки помимо самосборки осуществляют важнейшую функцию катализа и информационного переноса между нуклеиновыми кислотами.

Далее мы рассмотрим вкратце ключевые характеристики генетического аппарата и его функционирования: структурные особенности важнейших компонентов молекул - ДНК, РНК и белков - и то, как они работают, обеспечивая сохранение целостности генома и трансляцию генотипа организма в его фенотип. Эти вопросы детально рассматриваются в гл.1, 2 и 3, составляющих первую часть книги.

Структура и сохранение геномной ДНК

Все клеточные ДНК состоят из двух полинуклеотидных цепей, закрученных вокруг общей оси с образованием двойной спирали. Наружную поверхность спирали составляет остов каждой цепи, состоящий из повторяющихся остатков дезоксирибозы. Цепи удерживаются вместе благодаря водородным связям между пуриновыми основаниями одной цепи и пиримидиновыми - другой: аденин всегда спарен с тимином, а гуанин - с цитозином. В результате образования таких практически инвариантных пар последовательность оснований одной цепи однозначно определяет их последовательность в другой - иными словами, цепи двойной спирали ДНК комплиментарны.

Молекулы ДНК выполняют две разные функции. Первая - последовательность пуриновых и пиримидиновых оснований каждой цепи служит матрицей, с которой копируется новая цепь. Вторая - гены, составляющие ДНК, детерминируют синтез ферментов и других белков, необходимых для синтеза новых молекул ДНК. При репликации в особом участке двойной спирали ДНК происходит расплетание цепей. В результате каждая цепь начинает функционировать как матрица, на которой синтезируется новая, комплиментарная цепь. Таким образом, каждая из обеих образовавшихся дочерних спиралей получает одну цепь от родительской спирали, а другую - образованную в результате синтеза de novo. Несмотря на кажущуюся логическую простоту, процесс репликации в действительности очень сложен и для его осуществления необходимо множество белков. Важнейшими из них являются ферменты, называемые ДНК-полимеразами. Их роль в репликации состоит в сборке полинуклеотидных цепей из отдельных мононуклеотидов. Все ДНК-полимеразы удлиняют полинуклеотидную цепь последовательным добавлением отдельных дезоксинуклеотидов.

Выбор нуклеотида, который должен быть присоединен к цепи, определяется способностью входящего в его состав основания образовывать комплиментарную пару со следующим свободным основанием цепи-матрицы. Высокая надежность процесса репликации гарантирует практически безошибочную передачу генетической информации в ряду поколений.

Одно из открытий, сделанных при изучении простейших геномов, состояло в том, что они кодируют аппарат для собственного увековечения и сохранения. Более того, генетическая программа допускает возможность перестроек ДНК, и хотя при этом часто образуются невыгодные, неблагоприятные перестройки, создаваемые новые комбинации генов являются материалом для эволюционного экспериментирования. Все геномы содержат информацию, необходимую для синтеза РНК, ферментов и различных белков, участвующих в этих процессах. Один из таких процессов - генетическая рекомбинация, в результате которой происходит обмен между сегментами гомологичных хромосом. Ранее мы отмечали, что генетические обмены связаны, по-видимому, со спариванием хромосом в мейозе; более того, процесс кроссинговера можно визуализировать. Если рассматривать эти события на молекулярном уровне, то рекомбинация происходит в местах перекреста и состоит в разрыве и воссоединении цепей в пределах соответствующих областей ДНК рекомбинирующих хромосом. Рекомбинация, также генетически детерминированная, может происходить и между определенными участками ДНК негомологичных хромосом; в результате создаются новые связи между генетическими структурами. Для осуществления различных процессов рекомбинации, обнаруженных у прокариот, требуется целая армия ферментов, обеспечивающих спаривание гомологов или особых последовательностей и катализирующих разрывы и воссоединение цепей.

Существуют также и специальные механизмы репарации повреждений ДНК. Облучение клеток ультрафиолетовым светом или рентгеновскими лучами либо обработка различными химическими агентами приводят к повреждениям, затрагивающим основания или остов молекулы ДНК. В ДНК закодирована информация о синтезе репарирующих ферментов и белков, поддерживающих целостность генома любого организма.

Экспрессия и регуляция генов

Белки - основные детерминанты фенотипа организма. Из них построены и ферментативный аппарат, обеспечивающий метаболическую, энергетическую и биосинтетическую активность всех клеток, и регуляторные элементы, координирующие эти виды активности в ответ на эндогенные и экзогенные сигналы. Белки являются также основными компонентами многих структурных элементов, характеризующих морфологию клетки и опосредующих ее движение. Говоря в двух словах, организмы - это в конечном счете те белки, которые они сами и производят.

Постулат "один ген - один полипептид" создал концептуальную базу для анализа связи генотипа организма с его фенотипом. Но до решения проблемы структурной организации белков и ДНК, т.е. до начала 50-х годов, эта теория не имела молекулярной основы. С разработкой новых методов анализа белковой структуры было установлено, что каждый белок обладает уникальной линейной аминокислотной последовательностью. Эта последовательность, называемая первичной структурой, определяет характер укладки полипептидной цепи с образованием биологически активной трехмерной формы. Таким образом, структура белка определяется его аминокислотной последовательностью, которая в свою очередь кодируется генами. Доказательством этому служит тот факт, что мутации в гене приводят к изменению аминокислотной последовательности соответствующего белка. Более того, последовательности мутантных сайтов в генах и последовательности измененных аминокислот в соответствующих белках коллинеарны, т.е. порядок их следования одинаков. Таким образом, было показано, что линейное расположение нуклеотидов в ДНК и аминокислот в белках взаимосвязано, т.е. одна из характеристик генетического кода установлена.

Идея генетического кода подразумевает существование определенного механизма перевода нуклеотидной последовательности ДНК в аминокислотную последовательность белков. С середины 50-х до начала 60-х годов молекулярные основы генетического кода и механизм его расшифровки при сборке полипептидной цепи были установлены. Раскрытие этой тайны стало одним из монументальных достижений молекулярной генетики. Неожиданно код оказался очень простым и абсолютно одинаковым для всех жизненных форм. Более того, выяснилось, что универсальны и общие правила трансляции генетически закодированных посланий.

Генетический словарь состоит из 64 кодонов, каждый из которых представлен тремя последовательно расположенными нуклеотидами в цепи ДНК.61 из 64 триплетов кодируют аминокислоты, причем каждый триплет - только одну аминокислоту. Один из этих триплетов имеет двойную функцию: кодирует аминокислоту метионин и обозначает начало фрагмента ДНК, кодирующего белок. Каждый из трех остальных триплетов может служить сигналом окончания последовательности, кодирующей белок. Генетический код вырожден, поскольку одной и той же аминокислоте может соответствовать более чем один кодон; но, с другой стороны, код не двусмысленный, потому что любой кодон обозначает только одну аминокислоту. Если известен словарь кодонов, то перевести генную последовательность в соответствующий белковый продукт не составляет труда.

Для экспрессии гена в виде белкового продукта сначала должна произойти транскрипция ДНК с образованием РНК. Этот процесс осуществляется с помощью РНК-полимераз - ферментов, катализирующих синтез цепи РНК путем копирования нуклеотидной последовательности одной цепи ДНК с помощью комплиментарного спаривания оснований. Гены, кодирующие белки, детерминируют синтез молекулы "мессенджер", или матричной РНК, называемой так потому, что она несет генетическую информацию, закодированную в соответствующем сегменте ДНК, и непосредственно участвует в сборке белков. Некоторые гены не кодируют никаких белков. При их транскрипции образуются не мРНК, а молекулы РНК, необходимые для образования зрелых РНК разного типа и для трансляции мРНК в белки.

Исследование взаимодействия РНК-полимераз и других вспомогательных белков транскрипции с ДНК расширило наши знания о специфичности и прочности межмолекулярных взаимодействий. Так, было показано, что осуществляются очень точные молекулярные контакты между белками и специфичными группами нуклеотидов в ДНК, а это в свою очередь открыло новые перспективы в исследовании проблем экспрессии и регуляции генов. Мы вкратце прокомментируем, как такие взаимодействия опосредуют регуляцию работы генов.

В рамках вводной главы невозможно описать такой совершенный процесс, как трансляция последовательности нуклеотидов матричной РНК в белковую цепь. Он действительно очень сложен и состоит из множества повторяющихся этапов. Трансляцию молекул мРНК в белки катализируют рибонуклеопротеиновые частицы, содержащие более 50 различных белков и три вида молекул РНК. Синтез белковой цепи начинается с присоединения рибосом к матричной РНК. Белковая цепь удлиняется на одну аминокислоту, когда рибосома продвигается вдоль молекулы мРНК на один кодон. Ключевой момент трансляции - перевод генетической информации, закодированной в триплетных кодонах матричной РНК, в специфические аминокислоты - зависит от комплиментарного спаривания оснований. Каждая аминокислота присоединяется к особой, родственной ей транспортной РНК, содержащей триплет, комплиментарный кодоновому триплету в матричной РНК. Благодаря спариванию оснований между кодоном мРНК и антикодоном тРНК нужная аминокислота занимает свое место в растущей полипептидной цепи. За один цикл перемещения рибосомы по всей длине молекулы мРНК, кодирующей данный белок, образуется одна молекула этого белка.

Изучение экспрессии генов - только один из аспектов исследования механизма их действия. Другой связан с регуляторными процессами, контролирующими время и степень экспрессии при разных условиях. Неудивительно, что прогресс в понимании механизма транскрипции и трансляции позволил прояснить и проблему регуляции. Так, было показано, что у бактерий регуляция экспрессии генов происходит дифференцированно. Действительно, при некоторых условиях многие гены не экспрессируются вовсе, а степень экспрессии других различается на порядки. Однако изменение условий может приводить к активации молчавших ранее генов и, напротив, к репрессии активных. Это предоставляет клеткам широкие возможности для изменчивости, обеспечивающей приспособленность их фенотипов к условиям среды.

Экспрессия генов обычно регулируется на уровне образования РНК. Как правило, инициация транскрипции регулируется либо репрессорными белками, блокирующими транскрипцию, либо активаторными, необходимыми для ее запуска. В первом случае экспрессия начинается после снятия репрессии в результате модификации белка-репрессора. Во втором ген транскрибируется только в том случае, если активаторный белок находится в соответствующем функциональном состоянии. Репрессорные и активаторные белки - не единственные средства регуляции транскрипции. В некоторых случаях белки - продукты генной экспрессии - сами служат регуляторами транскрипции собственных генов. Известны также случаи, когда на эффективность транскрипции влияют структурные изменения в ДНК. Образование РНК может регулироваться и путем контроля скорости элонгации или места ее окончания, т.е. транскрибироваться может весь ген или какая-то его часть при наличии специфического стоп-сигнала. Экспрессия генов может также регулироваться на уровне трансляции матричной РНК в белки. В этом случае специфическая регуляция тоже обычно осуществляется на начальных этапах процесса декодирования.

Характеристики

Тип файла
Документ
Размер
27,29 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6618
Авторов
на СтудИзбе
295
Средний доход
с одного платного файла
Обучение Подробнее