24912-1 (645623), страница 2
Текст из файла (страница 2)
В 1990 году удалось показать, что ответственными за опознание Х- и Y-хромосом и их последующую конъюгацию и расхождение в мейозе являются короткие последовательности нуклеотидов длиной в 240 п.н., расположенные в промежутках между генами рибосомной РНК, как в Х-, так и Y-хромосоме. Участок локализации локуса со/ занимает в Y-хромосоме около 7% ее длины. Удаление bb с помощью хромосомных нехваток (делений) полностью нарушает правильную конъюгацию половых хромосом.
Еще один ген - crystal (cry) влияет на поведение хромосом в мейозе и правильное формирование гамет. Разрывы участка хромосом, занимаемого этим геном, не приводят к развитию каких-либо фенотипических изменений у самцов дрозофил. Однако при полном или частичном удалении этого участка с помощью делений в первичных сперматоцитах, в клетках, из которых образуются сперматозоиды, появляются белковые кристаллы, а во время мейоза нарушается расщепление хромосом. Интересно отметить, что есть еще один ген, расположенный в эухроматине Х-хромосомы, - Stellate (Ste), который взаимодействует с геном crystal. При этом, если в Х-хромосоме присутствует нормальный аллель гена Stellate (Ste+), кристаллы имеют игловидную форму, если мутантный Ste- - они приобретают вид звезды. Ген Ste+ был клонирован, и в результате анализа ДНК было показано, что он содержит тандемно повторенную (до 200 раз) последовательность длиной 1250 п.н. Нужная степень повторенности этого фрагмента соответствует аллелю Ste+ (игловидные кристаллы у Ste+/0 самцов, то есть тех, которые не имеют Y-хромосомы). Высокая степень повторенности приводит к образованию звездовидных кристаллов у Ste- /О. Транскрипты гена Ste- находят в семенниках. Ген Ste+ кодирует бета-субъединицу фермента казеин-киназы-2. Этот белок, по-видимому, вовлечен в процессы конденсации хромосом и их последующего расхождения по гаметам.
Присутствие нормального аллеля гена crystal ингибирует накопление РНК гена Ste+. По существующим представлениям сгу+ контролирует активность гена Ste+: удаление Y-хромосомы приводит к сверхпродукции Ste+-PHK, в результате чего избыток белка этого гена кристаллизуется в сперматоцитах и нарушает их функциональные возможности, что и приводит к стерильности.
У D. melanogaster найдено шесть факторов фертильности самцов (kl-5, kl-3, kl-2, kl-1, ks-I и ks-2 нарис. З) Из них три очень больших: kl-5, kl-3 и ks-1 — занимают по 10% Y-хромосом каждый, то есть примерно по 4000 т.п.н.
Интересно проявляется активность факторов фертильности у дрозофилы. В 1961 году три немецких ученых (G.F. Меуег, О. Hess, W. Beermann) описали особые нитевидные структуры в ядрах развивающихся сперма тоцитов D. melanogaster, которые впоследствии стал называть петлями (рис. 5). Такие структуры нашли фактически у всех 50 изучаемых видов дрозофилы. Показано, что петли - это декомпактизованные, а следовательно, активные участки Y-хромосом. В них синтезируется РНК и накапливаются белки. Каждая петля ядре данного вида дрозофилы имеет характерные размеры, ультраструктуру и внешний вид (см. рис. 5). У других видов морфология набора петель другая.
О том, что петли формируются из материала Y-xpомосомы, свидетельствуют следующие факты.
1. У самцов, не имеющих Y-хромосомы (ХО), нет и петель, а у особей с двумя Y-хромосомами (XYY) они присутствуют в двойном наборе. Если происходит делеция части Y-хромосомы, обнаруживаются не все петли. В линиях с дупликациями частей Y-хромосом число петель соответственно увеличивается.
2. У межвидовых гибридов морфология петель такая же, как и у вида - донора Y-хромосомы.
Более детальный анализ показал, что гены ферментильности самцов локализованы в петлях.
1.Сначала были установлены корреляции между числом генов и петель. Затем, используя хромосомные – перестройки, установили прямое соответствие в их локализации. Так, фактор kl-5 соответствует петле А, поскольку и петля, и фактор располагаются между точками разрывов одних и тех же перестроек (см. рис. 3). Фактор kl- 3 расположен в петле B, ks-1 - в петле С.
2. При удалении делециями хотя бы одной петли самец становится стерильным.
После получения клонов ДНК из Y-хромосом дрозофил появилась возможность анализа молекулярной организации этой хромосомы. Общая длина петель составляет около 1000 мкм, или 1/12 всей длины ДНК в Y-хромосоме. Функции остальных 11/12 пока неизвестны. В состав ДНК Y-хромосомы входят два типа повторенных последовательностей.
Рис. 3. Общий вид ядра спермотоцита у самца Drosofilia hydei (из [1], с.62). TR, P, THD, CL, THP, NS – названия петель, С – центромера, N - ядрышко
Вывод:
Таким образом, муха Дрозофила играет большую роль, как объект генетических исследований. Исследование ее генов принесло известность многим генетикам. Изучая гены Дрозофилы, ученые открыли много законов, таких как: закон Моргана - сцепленного наследования генов и закон Менделя. К тому же у Дрозофилы нашли много различных генов, отвечающих за наследование некоторых признаков. В последствии многие из этих открытий применялись к людям. И если бы не было этих мух, ученые еще долго бы не открыли законы наследования у людей.
Таблица 1.
| Свойства | Эухроматин | Гетерохроматин |
| Доля генома | 67% | 33% |
| Расположение в хромосомах | Плечи хромосом | В прицентромерных областях, вся Y-хромосом |
| Состояние компактности в клеточном | В ходе митотического и мейоти- | На протяжении всего клеточного цикла |
| Цикле | ческого делений | |
| Компактизующее влияние на приближен | Не оказывает | Участки эухроматина, приближенные к гетеро |
| ные участки хромосом (эффект положе | хроматину, также становятся компактными, | |
| ния мозаичного типа) | гены в них инактивируются | |
| Способность объединяться с другими | Не отмечена | Гетерохроматиновые участки объединяйте; |
| районами хромосом | образуя хромоцентры | |
| Образование хромосомных перестроек | Обычная частота обнаружения | Повышенная частота обнаружения |
| Расположение в клеточном ядре | По всему объему ядра | Главным образом на ядерной оболочке |
| Время синтеза ДНК в клеточном цикле | Первые 3/4 периода синтеза ДНК | Последняя половина S-периода. Завершени |
| в интерфазе (S-периода) | процесса репликации ДНК сильно задержано | |
| Дифференциальная окраска специфичес | Отсутствие окраски | Интенсивная окраска |
| кими красителями (С-окраска) | ||
| Фракции ДНК по степени повторенности | -90% уникальных последователь | Основная масса ДНК представлена высокопое |
| ностей и -10% умеренно повто | торенными фракциями, в меньшей степен | |
| ренных | умеренными повторами и совсем мало уникал! | |
| ных последовательностей | ||
| Наличие особых компактизующих бел | Почти отсутствует | Обильно присутствует по всему гетерохромг |
| ков, например белка НР1 | тину | |
| Варьирование количества материала в | Заметное варьирование не обна | Варьирование количества гетерохроматина un |
| хромосомах | ружено | роко представлено в каждой хромосоме |
| Генетическое содержание | Основная часть всех генов генома | Гены почти отсутствуют |
| локализована в эухроматине |
Литература:
«Соросовский Образовательный Журнал» том 6 №2 2000
И. Ф. Жимулев «Молекулярная и генетическая организация гетерохромотина в хромосомах дрозофилы».
Биология №14 1996.
А.А. Замятнин «Хромосомные матрицы, или Ода в честь плодовой мушки-дрозофилы»













