532 (642012), страница 2
Текст из файла (страница 2)
Арматура располагается в один ряд.
h0=0.47m;
μ=3.08*10-4/0.2*0.47=0.0033;
ζ=0.0033*365*106/0.9*11.5*106=0.116;
η=1-0.5*0.116=0.942.
Ms=As*Rs*h0*η=3.08*10-4*365*106*0.942*0.47=49.77 кН*м.
Поперечная сила в ---- обрыва стержней Qs=100 кН;
Qsw=67.95 кН/м; Длина анкеровки – W5=100*103/2*67.95*103+5*0.014=0.8m>20d=20*0.014=0.28m.
3.10 Расчет стыка сборных элементов ригеля.
Рассматриваем вариант бетонированного стыка. В этом случае изгибающий момент на опоре воспринимается соединительными и бетоном, заполняющий полость между торцами ригелей и колонной.
Изгибающий момент на грани колонны: М=94,96 кН*м. Рабочая высота сечения ригеля
h0=h-a=0.5-0.015=0.485 m. Принимаем бетон для замоноличивания класса B20; Rb=11.5 МПа.
gbr=0.9;
Арматура – класса А-III, Rs=365 МПа.
Вычисляем: αm=M/Rb*b*h02=94.96*103/0.9*11.5*106*0.2*0.4852=0.195
По таблице 3.1[1] находим: η=0,89 и определяем площадь сечения соединительных стержней:
As=M/Rs*h0* η=94.96*103/365*106*0.89*0.485=6.03*10-4 m2.
Принимаем: 2ø20 А-III с As=6.28*10-4 m2.
Длину сварных швов определяем следующим образом:
∑lm=1.3*N/0.85*Rw*hw=1.3*220*103/0.35*150*106*0.01=220 кН,
где N=M/h0*η=94.96*103/0.89*0.485=220 кН.
Коэффициент [1,3] вводим для обеспечения надежной работы сварных швов в случае перераспределение моментов вследствие пластических деформаций.
При двух стыковых стержнях и двусторонних швах длина каждого шва будет равна :
lw=∑lw/4+0.01=0.22/4+0.01=0.06 m.
Конструктивное требование: lw=5d=5*0.02=0.1 m.
Принимаем l=0.1m
Площадь закладной детали из условия работы на растяжение:
A=N/Rs=220*103/210*106=10.5*10-4 m2.
Принимаем 3 Д в виде гнутого швеллера из полосы g=0.008 m длиной 0,15 м;
A=0.008*0.15=12*10-4 m2>A=10.5*10-4 m2.
Длина стыковых стержней складывается из размера сечения колонны, двух зазоров по 0,05 м и l=0.25+2*0.05+2*0.1=0.55 m.
-
Расчет внецентренно сжатой колонны.
-
Определение продольных сил от расчетных усилий.
-
Грузовая площадь средней колонны при сетке колонны 6х52, м равна Агр=6*5,2=31,2 м2.
Постоянная нагрузка от перекрытия одного этажа с учетом jn=0.95: Qперекр=3920*31,2*0,95=116,2 кН, от ригеля Qbm=(2.61*103/5.2)*31.2=15.66 кН; от колонны: Qcol=0.25*0.25*4.2*25000*1.1*0.95=6,86 кН., Итого: Gперекр=138,72 кН.
Временная нагрузка от перекрытия одного этажа с учетом jn=0.95: Qвр=4800*31,2*0,95=142,27 кН, в точности длительная: Qврдл=3000*31,2*0,95=88,92 кН, кратковременное Qвркр=1800*31,2*0,95=53,35 кН.
Постоянная нагрузка при весе кровли и плиты 4 КПа составляет: Qпок=4000*31,2*0,95=118,56 кН, от ригеля : Qвш=15,66 кН; от колонны: Qcol=6,86 кН;
Итого: Gпокр=141,08 кН.
Снеговая нагрузка для города Москвы – при коэффициентах надежности по нагрузке jf=1.4 и по назначению здания jn=0.95: Qcн=1*31,2*1,4*0,95=41,5 кН, в точности длительная:
Qснl=0.3*41.5*103=12.45 кН; кратковременная : Qснкр=0,7*41,5*103=29,05 кН.
Продольная сила колонны I этажа от длительных нагрузок :
Nl=((141.08+12.45+(138.72+88.92)*2)*103=608.81 кН; то же от полной нагрузки N=(608.81+29.05+53.35)*103=691.21 кН.
-
Определение изгибающих моментов колонны от расчетных нагрузок.
Определяем максимальный момент колонн – при загружении 1+2 без перераспределения моментов. При действии длительных нагрузок:
М21=(α*g+β*φ)*l2= - (0.1*27.36+0.062*17.1)*103*5.22= - 102.65 кН*м.
N23= - (0,091*27,36+0,03*17,1)*103*5.22= - 81.19 кН*м.
При действии полной нагрузки: М21= - 102,65*103-0,062*10,26*103*5,22= - 119,85 кН*м;
М23= - 81,19*103-0,03*10,26*103*5,22= - 89,52 кН*м.
Разность абсолютных значений опорных моментов в узле рамы: при длительных нагрузках
∆Мl=(102.65-81.19)*103=21.46 кН*м;
∆М=(119,85-89,52)*103=30,33 кН*м.
Изгибающий момент колонны I этажа: М1l=0.6*∆Мl=0.6*21.46*103=12.88 кН*м; от полной нагрузки: М1=0,6*∆М=0,6*30,33*103=18,2 кН*м.
Вычисляем изгибающие моменты колонны, соответствующие максимальным продольным силам; для этого используем загружение пролетов ригеля по схеме 1.
От длительных нагрузок : ∆Мl=(0,1-0,091)*44,46*103*5,22=10,82 кН*м;
Изгибающий момент колонны I этажа: М1l=0.6*10.82*103=6.5 кН*м.
От полных нагрузок: ∆М=(0,01-0,091)*52,31*103*5,22=12,73 кН*м; изгибающий момент колонны I этажа: М1=0,6*12,73*103=7,64 кН*м.
-
Характеристики прочности бетона и арматуры.
Бетон тяжелый класса В20; Rb=11.5 МПа; jb2=0.9; Eb=27000 МПа.
Арматура класса А-III, Rs=365 МПа; Es=200 000 МПа.
Комбинация расчетных усилий: max N=691.21 кН, в точности от длительных нагрузок Nl=608.81 кН и соответствующий момент М1=7,64 кН*м, в точности от длительных нагрузок M1l=6.5 кН*м.
Максимальный момент М=18,2 кН*м, в точности Ml=12.88 кН*м и соответствующее загружению 1+2 значение N=691.21*103-142.27*103/2=620.1 кН, в точности Nl=608.81*103-88.92*103/2=564.35 кН.
-
Подбор сечений симметричной арматуры As= As’.
Приведем расчет по второй комбинаций усилий.
Рабочая высота сечения колонны h0=h-a=0.25-0.04=0.21 m; ширина b=0.25 m.
Эксцентриситет силы е0=M/N=18.2*103/620*103=0.029 m. Случайный эксцентриситет е0=h/30=0.25/30=0.008 m, или е0=l/600=4.2/600=0.029m> случайного, его и принимаем для расчета статически неопределимой системы.
Находим значение моментов в сечении относительно оси, проходящий через ц.т. наименее сжатой (растянутой) арматуры.
При длительной нагрузки: : М1l=Мl+Nl(h/2-a)=12.88*103+564.35*103(0.25/2-0.04)=60.85 кН*м; при полной нагрузки: М1=18,2*103+620,1*103*0,085=70,91 кН*м.
Отношение l0/τ=4.2/0.0723=58.1>14
Расчетную длину многоэтажных зданий при жестком соединении ригеля с колоннами в сборных перекрытиях принимаем равной высоте этажа l0=l. В нашем случае l0=l=4,2 м.
Для тяжелого бетона: φl=1+M1l/Ml=1+60.95*103/70.91*103=1.86. Значение j=l0/h=0.029/0.25=0.116
Задаемся коэффициентом армирования μ1=2*As/A=0.025, вычисляем критическую точку :
Ncr=6.4Eb*A/l2* [r2/ φl*(0.11/(0.1+j)+0.1)+αμ1*(h/2-a)2]=6.4*27*109*0.252/4.22*[0.07232/1.86*(0.11/(0.1+0.229)+0.1)+7.4*0.0025(0.25/2-0.4)2]=
1566 кН.
Вычисляем : η=1/(1-N/Ner)=1/(1-620.1*103/1566*103)=1.66
Значение эксцентриситета равно: e=e0*η+h/2-a=0.029*1.66+0.25/2-0.04=0.13 m.
Определяем границу относительную высоту сжатой зоны:
ζr=w/1+65R/500*(1-w/1.1)=0.77/1+365*103/500*(1-0.77/1.1)=0.6.
где w=0,85-0,008*Rb=0.85-0.08*0.9*11.5=0.77 – характеристика деформированных свойств бетона.
Вычисляем :
1) αn=N/Rb*b*h0=620.1*103/0.9*11.5*103*0.25*0.21=1.14>ζR.
2) αS= αn(e/h0-1+ αn/2)/1-S’=1.14*(0.13/0.21-1+1.14/2)/1-0.19=0.27>0
j’=a’/h0=0.04/0.21=0.19.
-
ζ= αn(1- ζR)+2* αS* ζR /1- ζR+2* αS=(1.14*(1-0.6)+2*0.27*0.6)/1-0.6+2*0.27=0.83> ζR
Определяем площадь сечения арматуры:
As=As’=N/Rs*(e/h0- ζ*(1- ζ/2)/ αn)/1-j’=620.1*103/365*103*(0.13/0.21-0.83*(1-0.83)/1.14)/1-0.19=
=4.05*10-4 m2.
Принимаем 2ø18 А-III с As=5.09*10-4 m2.
Проверяем коэффициенты армирования: μ=2*As/A=2*5.09*10-4/0.252=0.016<0.025. Следовательно, принимаем армирование колонны по минимальному коэффициенту:
2As/A=0.025
As=A*0.025/2=0.0252*0.025/2=7.81*10-4 m2.
Принимаем 2Ф25 А –III с As=9.82*10-4 m2.
-
Расчет и конструирование короткой консоли.
Опорное давление ригеля Q=156,8 кН.
Принимаем бетон класса В20; Rb=11.5 МПа, jbr=0.9
Арматура класса А-III, Rs=365 МПа, принимает длину опорной площади l=0.2m при ширине ригеля bbm=0.2 m и проверим условие:
Q/0.75*l*bbm=156.8*103/0.75*0.2*0.2=5.23МПа < Rb=11.5 МПа.
Вылет консоли с учетом зазора 0,05 м составляет l1=0.25 m, при этом расстояние а=l1-l/2=0.25-0.2/2=0.15 m.
Высоту сечения консоли у грани колонны принимаем равной h=(0.7/0.8)*hbm=0.75*0.5=0.4m; при угле наклона сжатой грани j=450 высота консоли у свободного края h1=h-l1=0.4-0.25=0.15m;
Рабочая высота сечения консоли h0=h-a=0.4-0.03=0.37m; Поскольку l1=0.25m<0.9h0=0.9*0.37=0.33m - консоль короткая.
Консоль армируем горизонтальными хомутами Ф6А-I с As=2*0.283*10-4=0.586*10-4 m2 с шагом S=0.1m и отгибами 2ФА-III с As=4.02*10-4 m2.
Проверяем прочность сечения консоли по условию: μw1=Asw/bs=0.566*10-4/0.25*0.1=0.023;
αs=Es/Eb=210*109/27*109=7.8; φw2=1+5*α* μw1=1+5*7.8*0.0013=1.05;
sin2θ=h2/( h2+l21)=0.42/(0.42+0.252)=0.72, при этом
Qb=0.8* φw2*Rb*b*sin2 θ=0.8*1.05*0.9*11.5*106*0.25*0.2*0.72=313 кН.
Правая часть этого условия принимается не более 3,5Rbt*h0*b=3.5*0.9*0.9*106*0.25*0.37=262.24 кН.
Следовательно, Qmax=156.8 кНb=262.24 кН. – прочность обеспечена.
Изгибающий момент консоли у грани колонны по ф:
М=Q*a=156.8*103*0.15=23.52 кН*м.
Площадь сечения продольной арматуры при η=0,9.
As=1.25*M/Rs*h0* η=1.25*23.52*103/365*106*0.9*0.37=2.42*10-4 m2.
Принимаем 2Ф14 А-III с As=3.08*10-4 m2.
-
Конструирование арматуры колонны. Стык колонн.
Колонна армируется пространственным каркасом, образованным из плоских сварных каркасов. Диаметр поперечных стержней при диаметре продольной арматуры ø25 мм равен ø8 мм. Принимаем ø8 А-I с шагом S=0.25m – по размеру стороны сечения колонны, что менее 20*d=20*0.025=0.5m
Стык колонн выполняем на ванной сварке выпусков стержней с обетонированием.
В местах стыка концентрируется напряжения, поэтому торцевые участки усиливаем косвенным армированием. Последнее препятствует поперечному расширению при продольном сжатии.
Косвенное армирование представляет собой пакет поперечных сеток. Принимаем 6 сеток с шагом S=0.05m – на расстоянии 0,25 м – по размеру стороны сечения колонны. Первая сетка располагается на расстоянии 0,015м от наружной поверхности элемента.
Рисунок___ Стык колонн Рисунок ___ Сетка С-4
-
Расчет центрально-нагруженного фундамента.
Сечение колонны принимаем 0,25*0,25 м. Усилие колонны у заделки в фундаменте:
-
N=691.21 кН*м, М=7,64*103/2=3,82 кН*м, эксцентриситет – е0=M/N=3,82*103/691,21*103=0,006м;
-
N=620.1 кН, М=18.2*103/2=9.1 кН*м; е0=M/N=9.1*103/620.1*103=0.01m.
Ввиду относительно малых значений эксцентриситетов фундамент колонны рассчитываем как центрально нагруженный.
Расчетное усилие N=691.21 кН; усредненное значение коэффициента надежности по нагрузке jf=1.15, нормативное усилие Nn=N/jf=691.21*103/1.15=601.05 кН.
Принимаем бетон для фундамента класса В12,5; Rbt=0.66 МПа, jb2=0.9. Арматура класса
А-II, Rs=280 МПа. Расчетное сопротивление грунта – R0=0.2 МПа.
Вес единицы объема бетона фундамента и группа на его обрезах j=20 кг/м3.
Высоту фундамента предварительно принимаем равной H=0.5 m; глубину заложения H1=1.05m.
Площадь подошвы фундамента определяем предварительно без поправок R0 на ее ширину и заложения:
A=Nn/R0-j*H1=601.05*103/0.2*103-20*103*1.05=3.36 m2.
Сторона квадратной подошвы а=√A=√3.36=1.87 m.
Принимаем a=2.1m (кратно 0,3).
Давление на грунт от расчетной нагрузки p=N/A=691.21*103/2.1*2.1=156.74 кН/м2.
Рабочая высота фундамента из условия продавления:
h0= - (hcol+bcol)/4 + 1/2√N/Rbt+p= - (0.25+0.25)/4 + ½(√691.21*103/0.9*0.66*106+156.74*103)=0.35m.
Полную высоту фундамента устанавливаем из условий:
- продавления : H=0.35+0.04=0.39 m.
- заделки колонны в фундаменте H=1.5*hcol+0.25=1.5*0.25+0.25=0.65 m.
- анкеровки сжатия арматуры колонны ø25 А – III: H=24*d+0.25=24*0.025+0.25=0.85m.
Принимаем окончательно без пересчета фундамент высотой H=0.9 m, h0=0.86 m – трехступенчатые.
Проверяем, отвечают ли рабочая высота нижней ступени фундамента h02=0.3-0.04=0.36 m условию прочности попречной силе без поперечного армирования в наклонном сечении, начинающимся в сечении III-III.
Для единицы ширины этого сечения (b=1m):
Q=0.5*(a-hcol-2*h0)*p=0.5*(2.1-0.25-2*0.86)*156.74*103=10.19 кН; при с=2,5*h0;
Q=0.6*j2*Rbt*b*h02=0.6*0.9*0.66*106*1*0.26=96.66 кН>Q=10.19 кН – условие прочности удовлетворяется.
Расчетные изгибающие моменты в сечениях I-I и II-II.
MI=0.125*p(a-hcol)2*b=0.125*156.74*103*(2.1-0.25) 2*2.1=140.82 кН*м.
MII=0.125*p(a-a1)2*b=0.125*156.74*103*(2.1-0.9) 2*2.1=59.25 кН*м.
Площадь сечения арматуры:
ASI=MI/0.9*h0*Rs=140.82*103/0.9*0.86*280*106=6.5*10-4 m2.
ASII=MII/0.9*h01*Rs=59.25*103/0.9*0.56*280*106=4.2*10-4 m2.
Принимаем нестандартную сварную сетку с одинаковой рабочей арматурой 9ø10 А-II c As=7.07*10-4 m2 с шагом S=0.25 m.
Процент армирования:
μI=ASI*100/bI*h0=7.07*10-4/0.9*0.86=0.09%
μII=ASII*100/bII*h01=7.07*10-4/1.5*0.56=0.084%
что больше μmim=0.09% и меньше μmax=3%.
6 Расчет монолитного ребристого перекрытия.
Монолитное ребристое перекрытие компонуем с поперечными главнами балками и продольными второстепенными балками.
Второстепенные балки размещаются по осям колони в третех пролете главной балки, при этом пролеты плиты между осями ребер равны: l/3= 5.2/3=1.73 m.
Предварительно задаемся размерами сечения балок: главная балка: высота h=(1/8+1/15)*f=(1/12)*5.2=0.45 m; ширина b=(0.4/0.5)*h=0.45*0.45=0.2 m.
Второстепенная балка: высота h=(1/12+1/20)*l=(1/15)*6=0.4m; ширина b=(0.4/0.5)*h=0.5*0.4=0.2m.
6.1 Расчет многопролетной плиты монолитного перекрытия.
6.1.1 Расчетный пролет и нагрузки.
Расчетный пролет плиты равен расстоянию в свему между гранями ребер l0=1.73-0.2=1.53m, в продольном направлении – l0=6-0.2=5.8 m. Отношение пролетов 5,8/1,53=3,8>2 – плиту рассчитываем как работающую по короткому направлению. Принимаем толщину плиты 0,05 м.
Таблица 3 Нагрузка на 1 м2 перекрытия.
Нагрузка | Нормативная нагрузка, Н/м2 | Коэффициент надежности по нагрузке | Расчетная нагрузка, Н/м2 |
Постоянная: - от собственного веса плиты, δ=0,05м, ρ=2500 кг/м3 - то же слоя цементного р-ра, δ=20 мм, ρ=2200 кг/м3 - то же керамических плиток, δ=0,013 м, ρ=1800 кг/м3 | 1250 440 230 | 1,1 1,3 1,1 | 1375 570 255 |
Итого Временная | 1920 4000 | - 1,2 | 2200 4800 |
Полная | 5920 | - | 7000 |
Для расчета многопролетной плиты выделяем полосу шириной 1 м, при этом расчетная нагрузка на 1 м длины с учетом коэффициента надежности по назначению здания jn=0.95 нагрузка на 1м:
(g+φ)=7000*0.95=6.65 кН/м.
Изгибающие моменты определяем как для многопролетной плиты с учетом перераспределения моментов:
- в средних пролетах и на средних опорах:
М=(g+φ)*l20/16=6.65*103*1.532/16=0.97 кН*м.
- в I пролете и на I промежуточной опоре:
М=(g+φ)*l20/11=6.65*103*1.532/11=1.42 кН*м.
Средние пролеты плиты окаймлены по всему контуру монолитно связанными с ними балками и под влиянием возникающих распоров изгибающие моменты уменьшаются на 20%, если h/l=1/30. При h/l=0,05/1,53=1/31<1/30 – условие не соблюдается.
6.1.2 Характеристика прочности бетона и арматура.
6.1.3 Подбор сечений продольной арматуры.
В средних пролетах и на средних опорах h0=h-a=0.05-0.012=0.038m.
αm=M/Rb*bf’*h20=0.97*103/0.9*8.5*106*1*0.0382=0.088
По таблице 3.1[1] находим η=0,953
As=M/Rs*bf’*h0=0.97*103/370*106*0.95*0.038=0.72*10-4 m2.
Принимаем 6ø4 Вр-I с As=0.76*10-4 m2 и соответствующую рулонную сетку марки:
(4Bp-I-100/4Bp-I-200)2940*Lc1/20
В I пролете и на I промежуточной опоре h0=0.034 m
αm=1.42*103/0.9*8.5*106*1*0.034=0.161 ; η=0,973
As=1.42*103/370*106*0.913*0.034=1.24*10-4 m2. – принимаем две сетки – основную и той же марки доборную.
6.2 Расчет многопролетной второстепенной балки.
6.2.1 Расчетный пролет нагрузки.
Расчетный пролет равен расстоянию в свету между главными балками l0=6-0.2=5.8 m.
Расчетные нагрузки на 1 м длины второстепенной балки:
постоянная:
- собственного веса плиты и поля: g1=2200*1.73=3.81 кН/м
- то же балки сечением 0,2х0,35 м,
g=2500 кг/м3, g2=0.2*0.35*25000=1.75 кН/м.
Итого: g=g1+g2=(3,81+1,75)*103=5.56 кН/м. С учетом коэффициента надежности по назначению здания jn=0.95: g=5.56*103*0.95=5.28 кН/м.
Временная с учетом jn=0.95: φ=4800*1,73*0,95=7,89 кН/м.
Полная нагрузка: g+ φ=(5.28+7.89)*103=13.17 кН/м.
6.2.2 Расчетные усилия.
Изгибающие моменты опираем как для многопролетной балки с учетом перераспределении моментов.
В I пролете М=(g+ φ)*l20/11=13.17*103*5.82/11=40.27 кН*м.
На I промежуточной опоре М=13.17*103*5.82/14=31.64 кН*м.
В средних пролетах и на средних опорах: М=13,17*103*5,82/16=27,69 кН*м.
Отрицательные моменты в средних пролетах зависит от отношения временной нагрузки к постоянной. При φ/g=7.88*103/5.28*103=1.5<3 отрицательный момент в среднем пролете можно принять равным 40% от момента на I промежуточной опоре Q=31.64*103*0.4=12.66 кН*м.
Поперечные силы на крайне опоре Q=0.4*(g+ φ)*l0=0.4*13.17*103*5.8=30.55 кН. На I промежуточной опоре слева Q=0.6*13.17*103*5.8=45.83 кН; на I промежуточной опоре справа
Q=0.5*13.17*103*5.8=38.19 кН.
6.2.3 Характеристики прочности бетона и арматуры.
Бетон класса В15; Rb=8.5 МПа; Rbt=0.75 МПа; jb2=0.9;
Арматура : продольная класса А-III с Rs=365 МПа;
Поперечная арматура класса Вр-I диаметром ø5Вр-I, Rsw=260 МПа.
6.2.4 Расчет прочности второстепенной балки по сечениям, нормальным к продольной оси.
Высоту сечения балки уточняем по опорному моменту при ζ=0,35, поскольку на опоре момент определен с учетом образования пластического шарнира.
По таблице 3.1[1] при ζ=0,35 находим αm=0.289 и определяем рабочую высоту сечения балки:
h0=√M/ αm*Rb*b=√31.64*103/0.289*0.9*8.5*106*0.2=0.23 m.
Полная высота сечения h0=h0+a=0.23+0.035=0.265 m. – принимаем h=0.3 m; h0=0.265 m.
Сечение в I пролете, М=40,27 кН*м, h0=0.265 m
αm=M/Rb*bf’*h20=40.27*103/0.9*8.5*106*2*0.2652=0.037
По таблице 3.1[1] находим: η=0,981; ζ=0,04; х= ζ*h0=0.04*0.265=0.011 m.< 0.05 m – нейтральная ось проходит в пределах сжатой полки.
Сечение арматуры: As=M/Rs*h0* η=40.27*103/365*106*0.981*0.265=4.24*10-4 m2.
Принимаем 2ø18А-III c As=3.09*10-4 m2.
Сечение в среднем пролете, М=27,69 кН*м.
As=27.69*103/365*106*0.981*0.265=2.92*10-4 m2.
Принимаем 2ø14А-III c As=3.08*10-4 m2.
На отрицательный момент М=12,66 кН*м сечения работает как прямоугольное:
αm= M/Rb*b*h20=12.66*103/0.9*8.5*106*0.2*0.2652=0.118; η=0,938;
As=12.66*103/365*106*0.938*0.265=1.4*10-4 m2.
Принимаем 2ø10А-III c As=1.57*10-4 m2.
Сечение на I промежуточной опоре, М=31,64 кН*м.
αm=31.64*103/0.9*8.5*106*0.2*0.2652=0.294; η=0,82;
As=31,64*103/365*106*0.82*0.265=3.99*10-4 m2.
Принимаем 6ø10А-III c As=4.71*10-4 m2. – две гнуты сетки по 3ø10А-III в каждой.
Сечение на средних опорах, М=27,69 кН*м
αm=27.69*103/0.9*8.5*106*0.2*0.2652=0.258; η=0,847;
As=27,69*103/365*106*0.847*0.265=3.38*10-4 m2.
Принимаем 5ø10А-III c As=3.92*10-4 m2.
6.2.5 Расчет второстепенной балки по сечениям, наклонным к продольной оси.
Q=45.63 кН.
Диаметр поперечных стержней устанавливаем из условия сварки с продольной арматурой ø18 мм и принимаем равным ø5 мм класса Вр-I c As=0.196*10-4 m2. Число каркасов два, при этом Asw=2*0.196*10-4=0.392*10-4 m2.
Шаг поперечных стержней по конструктивным условиям S=h/2=0.3/2=0.15 m. На всех приопорных участках длиной 0,25l принимаем шаг S=0.15 m; в средней части пролета S=(3/4)*h=0.75*0.3=0.225≈0.25 m.
Вычисляем: qsw=Rsw*Asw/S=260*0.392*10-4/0.15=67.95 кН/м; влияние свесов сжатой полки
φf=0.75*3h’f*hf/b*h0=0.75*3*0.05*0.05/0.2*0.265=0.11<0.5;
Qbmin=φb3*(1+φf)*Rbt*b*h0=0.6*1.11*0.9*0.75*106*0.2*0.265=23.83 кН; условие
ζsw=67.95 кН/м>Qbmin/2*h0=23*83*103/2*0.265=44.96 кН/м – удовлетворяется.
Требование: Smax= φb4*Rbt*b*h0/Qmax=1.5*0.9*0.75*106*0.2*0.2652/45.83*103=0.31m>S=0.15m – выполняется.
При расчете прочности вычисляем:
Mb= φb3*(1+φf)*Rbt*b*h02=2*1.11*0.9*0.75*106*0.2*0.2652=21.05 кН*м. При
q1=g+φ/2=(5.28+7.89/2)*103=9.23 кН/м.<0.56*qsw=0.56*67.95*103=38.05 кН/м – в связи с этим выполняется значение (с) по формуле:
с=√Mb/q1=√21.05*103/9.23*103=1.5m>3.33h0=3.33*0.265=0.88m – принимаем с=0,88 м, тогда
Qb=Me/c=21.05*103/0.88=23.92 кН> Qbmin=23.83 кН.
Поперечная сила в вершине наклонного сечения Q=Qmax-q1*c=45.83*103-9.23*103*0.88=37.71 кН. Длина проекции расчетного наклонного сечения с0=√Mb/qsw=√21.05*103/67.95*103=0.56m>2*h0=2*0.265=0.53 m – принимаем с0=0,53 м. Тогда Qsw=qsw*c0=67.95*103*0.53=36.01 кН>Q=37.71 кН –удовлетворяется.
Проверка по сжатой наклонной полосе:
μw=Asw/b*S=0.392*10-4/0.2*0.15=0.0013;
αs=Es/Eb=170*109/23*109=7.4;
φw1=1+5* αs*μ=1+5*7.4*0.0013=1.05;
φb1=1-0.01*Rb=1-0.01*0.9*8.5=0.92;
Условия прочности:
Qmax=45.83 кН≤0.3* μb1*Rb*b*h0=0.3*1.05*0.92*0.9*8.5*106*0.2*0.265=117.5 кН – удовлетворяется.
0>0>0>0>1>3>