532 (642012), страница 2

Файл №642012 532 (Записка к расчетам) 2 страница532 (642012) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Арматура располагается в один ряд.

h0=0.47m;

μ=3.08*10-4/0.2*0.47=0.0033;

ζ=0.0033*365*106/0.9*11.5*106=0.116;

η=1-0.5*0.116=0.942.

Ms=As*Rs*h0*η=3.08*10-4*365*106*0.942*0.47=49.77 кН*м.

Поперечная сила в ---- обрыва стержней Qs=100 кН;

Qsw=67.95 кН/м; Длина анкеровки – W5=100*103/2*67.95*103+5*0.014=0.8m>20d=20*0.014=0.28m.

3.10 Расчет стыка сборных элементов ригеля.

Рассматриваем вариант бетонированного стыка. В этом случае изгибающий момент на опоре воспринимается соединительными и бетоном, заполняющий полость между торцами ригелей и колонной.

Изгибающий момент на грани колонны: М=94,96 кН*м. Рабочая высота сечения ригеля

h0=h-a=0.5-0.015=0.485 m. Принимаем бетон для замоноличивания класса B20; Rb=11.5 МПа.

gbr=0.9;

Арматура – класса А-III, Rs=365 МПа.

Вычисляем: αm=M/Rb*b*h02=94.96*103/0.9*11.5*106*0.2*0.4852=0.195

По таблице 3.1[1] находим: η=0,89 и определяем площадь сечения соединительных стержней:

As=M/Rs*h0* η=94.96*103/365*106*0.89*0.485=6.03*10-4 m2.

Принимаем: 2ø20 А-III с As=6.28*10-4 m2.

Длину сварных швов определяем следующим образом:

∑lm=1.3*N/0.85*Rw*hw=1.3*220*103/0.35*150*106*0.01=220 кН,

где N=M/h0*η=94.96*103/0.89*0.485=220 кН.

Коэффициент [1,3] вводим для обеспечения надежной работы сварных швов в случае перераспределение моментов вследствие пластических деформаций.

При двух стыковых стержнях и двусторонних швах длина каждого шва будет равна :

lw=∑lw/4+0.01=0.22/4+0.01=0.06 m.

Конструктивное требование: lw=5d=5*0.02=0.1 m.

Принимаем l=0.1m

Площадь закладной детали из условия работы на растяжение:

A=N/Rs=220*103/210*106=10.5*10-4 m2.

Принимаем 3 Д в виде гнутого швеллера из полосы g=0.008 m длиной 0,15 м;

A=0.008*0.15=12*10-4 m2>A=10.5*10-4 m2.

Длина стыковых стержней складывается из размера сечения колонны, двух зазоров по 0,05 м и l=0.25+2*0.05+2*0.1=0.55 m.

  1. Расчет внецентренно сжатой колонны.

    1. Определение продольных сил от расчетных усилий.

Грузовая площадь средней колонны при сетке колонны 6х52, м равна Агр=6*5,2=31,2 м2.

Постоянная нагрузка от перекрытия одного этажа с учетом jn=0.95: Qперекр=3920*31,2*0,95=116,2 кН, от ригеля Qbm=(2.61*103/5.2)*31.2=15.66 кН; от колонны: Qcol=0.25*0.25*4.2*25000*1.1*0.95=6,86 кН., Итого: Gперекр=138,72 кН.

Временная нагрузка от перекрытия одного этажа с учетом jn=0.95: Qвр=4800*31,2*0,95=142,27 кН, в точности длительная: Qврдл=3000*31,2*0,95=88,92 кН, кратковременное Qвркр=1800*31,2*0,95=53,35 кН.

Постоянная нагрузка при весе кровли и плиты 4 КПа составляет: Qпок=4000*31,2*0,95=118,56 кН, от ригеля : Qвш=15,66 кН; от колонны: Qcol=6,86 кН;

Итого: Gпокр=141,08 кН.

Снеговая нагрузка для города Москвы – при коэффициентах надежности по нагрузке jf=1.4 и по назначению здания jn=0.95: Qcн=1*31,2*1,4*0,95=41,5 кН, в точности длительная:

Qснl=0.3*41.5*103=12.45 кН; кратковременная : Qснкр=0,7*41,5*103=29,05 кН.

Продольная сила колонны I этажа от длительных нагрузок :

Nl=((141.08+12.45+(138.72+88.92)*2)*103=608.81 кН; то же от полной нагрузки N=(608.81+29.05+53.35)*103=691.21 кН.

    1. Определение изгибающих моментов колонны от расчетных нагрузок.

Определяем максимальный момент колонн – при загружении 1+2 без перераспределения моментов. При действии длительных нагрузок:

М21=(α*g+β*φ)*l2= - (0.1*27.36+0.062*17.1)*103*5.22= - 102.65 кН*м.

N23= - (0,091*27,36+0,03*17,1)*103*5.22= - 81.19 кН*м.

При действии полной нагрузки: М21= - 102,65*103-0,062*10,26*103*5,22= - 119,85 кН*м;

М23= - 81,19*103-0,03*10,26*103*5,22= - 89,52 кН*м.

Разность абсолютных значений опорных моментов в узле рамы: при длительных нагрузках

∆Мl=(102.65-81.19)*103=21.46 кН*м;

∆М=(119,85-89,52)*103=30,33 кН*м.

Изгибающий момент колонны I этажа: М1l=0.6*∆Мl=0.6*21.46*103=12.88 кН*м; от полной нагрузки: М1=0,6*∆М=0,6*30,33*103=18,2 кН*м.

Вычисляем изгибающие моменты колонны, соответствующие максимальным продольным силам; для этого используем загружение пролетов ригеля по схеме 1.

От длительных нагрузок : ∆Мl=(0,1-0,091)*44,46*103*5,22=10,82 кН*м;

Изгибающий момент колонны I этажа: М1l=0.6*10.82*103=6.5 кН*м.

От полных нагрузок: ∆М=(0,01-0,091)*52,31*103*5,22=12,73 кН*м; изгибающий момент колонны I этажа: М1=0,6*12,73*103=7,64 кН*м.

    1. Характеристики прочности бетона и арматуры.

Бетон тяжелый класса В20; Rb=11.5 МПа; jb2=0.9; Eb=27000 МПа.

Арматура класса А-III, Rs=365 МПа; Es=200 000 МПа.

Комбинация расчетных усилий: max N=691.21 кН, в точности от длительных нагрузок Nl=608.81 кН и соответствующий момент М1=7,64 кН*м, в точности от длительных нагрузок M1l=6.5 кН*м.

Максимальный момент М=18,2 кН*м, в точности Ml=12.88 кН*м и соответствующее загружению 1+2 значение N=691.21*103-142.27*103/2=620.1 кН, в точности Nl=608.81*103-88.92*103/2=564.35 кН.

    1. Подбор сечений симметричной арматуры As= As.

Приведем расчет по второй комбинаций усилий.

Рабочая высота сечения колонны h0=h-a=0.25-0.04=0.21 m; ширина b=0.25 m.

Эксцентриситет силы е0=M/N=18.2*103/620*103=0.029 m. Случайный эксцентриситет е0=h/30=0.25/30=0.008 m, или е0=l/600=4.2/600=0.029m> случайного, его и принимаем для расчета статически неопределимой системы.

Находим значение моментов в сечении относительно оси, проходящий через ц.т. наименее сжатой (растянутой) арматуры.

При длительной нагрузки: : М1ll+Nl(h/2-a)=12.88*103+564.35*103(0.25/2-0.04)=60.85 кН*м; при полной нагрузки: М1=18,2*103+620,1*103*0,085=70,91 кН*м.

Отношение l0/τ=4.2/0.0723=58.1>14

Расчетную длину многоэтажных зданий при жестком соединении ригеля с колоннами в сборных перекрытиях принимаем равной высоте этажа l0=l. В нашем случае l0=l=4,2 м.

Для тяжелого бетона: φl=1+M1l/Ml=1+60.95*103/70.91*103=1.86. Значение j=l0/h=0.029/0.25=0.116min=0.5-0.01*l0/h-0.01*Rb=0.5-0.01*4.2/0.25-0.01*0.9*11.5=0.229 – принимаем j=0.229. Отношение модулей упругости α=Es/Eb=200*109/27*109=7.4.

Задаемся коэффициентом армирования μ1=2*As/A=0.025, вычисляем критическую точку :

Ncr=6.4Eb*A/l2* [r2/ φl*(0.11/(0.1+j)+0.1)+αμ1*(h/2-a)2]=6.4*27*109*0.252/4.22*[0.07232/1.86*(0.11/(0.1+0.229)+0.1)+7.4*0.0025(0.25/2-0.4)2]=

1566 кН.

Вычисляем : η=1/(1-N/Ner)=1/(1-620.1*103/1566*103)=1.66

Значение эксцентриситета равно: e=e0*η+h/2-a=0.029*1.66+0.25/2-0.04=0.13 m.

Определяем границу относительную высоту сжатой зоны:

ζr=w/1+65R/500*(1-w/1.1)=0.77/1+365*103/500*(1-0.77/1.1)=0.6.

где w=0,85-0,008*Rb=0.85-0.08*0.9*11.5=0.77 – характеристика деформированных свойств бетона.

Вычисляем :

1) αn=N/Rb*b*h0=620.1*103/0.9*11.5*103*0.25*0.21=1.14>ζR.

2) αS= αn(e/h0-1+ αn/2)/1-S=1.14*(0.13/0.21-1+1.14/2)/1-0.19=0.27>0

j=a/h0=0.04/0.21=0.19.

  1. ζ= αn(1- ζR)+2* αS* ζR /1- ζR+2* αS=(1.14*(1-0.6)+2*0.27*0.6)/1-0.6+2*0.27=0.83> ζR

Определяем площадь сечения арматуры:

As=As=N/Rs*(e/h0- ζ*(1- ζ/2)/ αn)/1-j=620.1*103/365*103*(0.13/0.21-0.83*(1-0.83)/1.14)/1-0.19=

=4.05*10-4 m2.

Принимаем 2ø18 А-III с As=5.09*10-4 m2.

Проверяем коэффициенты армирования: μ=2*As/A=2*5.09*10-4/0.252=0.016<0.025. Следовательно, принимаем армирование колонны по минимальному коэффициенту:

2As/A=0.025

As=A*0.025/2=0.0252*0.025/2=7.81*10-4 m2.

Принимаем 2Ф25 А –III с As=9.82*10-4 m2.

    1. Расчет и конструирование короткой консоли.

Опорное давление ригеля Q=156,8 кН.

Принимаем бетон класса В20; Rb=11.5 МПа, jbr=0.9

Арматура класса А-III, Rs=365 МПа, принимает длину опорной площади l=0.2m при ширине ригеля bbm=0.2 m и проверим условие:

Q/0.75*l*bbm=156.8*103/0.75*0.2*0.2=5.23МПа < Rb=11.5 МПа.

Вылет консоли с учетом зазора 0,05 м составляет l1=0.25 m, при этом расстояние а=l1-l/2=0.25-0.2/2=0.15 m.

Высоту сечения консоли у грани колонны принимаем равной h=(0.7/0.8)*hbm=0.75*0.5=0.4m; при угле наклона сжатой грани j=450 высота консоли у свободного края h1=h-l1=0.4-0.25=0.15m;

Рабочая высота сечения консоли h0=h-a=0.4-0.03=0.37m; Поскольку l1=0.25m<0.9h0=0.9*0.37=0.33m - консоль короткая.

Консоль армируем горизонтальными хомутами Ф6А-I с As=2*0.283*10-4=0.586*10-4 m2 с шагом S=0.1m и отгибами 2ФА-III с As=4.02*10-4 m2.

Проверяем прочность сечения консоли по условию: μw1=Asw/bs=0.566*10-4/0.25*0.1=0.023;

αs=Es/Eb=210*109/27*109=7.8; φw2=1+5*α* μw1=1+5*7.8*0.0013=1.05;

sin2θ=h2/( h2+l21)=0.42/(0.42+0.252)=0.72, при этом

Qb=0.8* φw2*Rb*b*sin2 θ=0.8*1.05*0.9*11.5*106*0.25*0.2*0.72=313 кН.

Правая часть этого условия принимается не более 3,5Rbt*h0*b=3.5*0.9*0.9*106*0.25*0.37=262.24 кН.

Следовательно, Qmax=156.8 кНb=262.24 кН. – прочность обеспечена.

Изгибающий момент консоли у грани колонны по ф:

М=Q*a=156.8*103*0.15=23.52 кН*м.

Площадь сечения продольной арматуры при η=0,9.

As=1.25*M/Rs*h0* η=1.25*23.52*103/365*106*0.9*0.37=2.42*10-4 m2.

Принимаем 2Ф14 А-III с As=3.08*10-4 m2.

    1. Конструирование арматуры колонны. Стык колонн.

Колонна армируется пространственным каркасом, образованным из плоских сварных каркасов. Диаметр поперечных стержней при диаметре продольной арматуры ø25 мм равен ø8 мм. Принимаем ø8 А-I с шагом S=0.25m – по размеру стороны сечения колонны, что менее 20*d=20*0.025=0.5m

Стык колонн выполняем на ванной сварке выпусков стержней с обетонированием.

В местах стыка концентрируется напряжения, поэтому торцевые участки усиливаем косвенным армированием. Последнее препятствует поперечному расширению при продольном сжатии.

Косвенное армирование представляет собой пакет поперечных сеток. Принимаем 6 сеток с шагом S=0.05m – на расстоянии 0,25 м – по размеру стороны сечения колонны. Первая сетка располагается на расстоянии 0,015м от наружной поверхности элемента.

Рисунок___ Стык колонн Рисунок ___ Сетка С-4

  1. Расчет центрально-нагруженного фундамента.

Сечение колонны принимаем 0,25*0,25 м. Усилие колонны у заделки в фундаменте:

  1. N=691.21 кН*м, М=7,64*103/2=3,82 кН*м, эксцентриситет – е0=M/N=3,82*103/691,21*103=0,006м;

  2. N=620.1 кН, М=18.2*103/2=9.1 кН*м; е0=M/N=9.1*103/620.1*103=0.01m.

Ввиду относительно малых значений эксцентриситетов фундамент колонны рассчитываем как центрально нагруженный.

Расчетное усилие N=691.21 кН; усредненное значение коэффициента надежности по нагрузке jf=1.15, нормативное усилие Nn=N/jf=691.21*103/1.15=601.05 кН.

Принимаем бетон для фундамента класса В12,5; Rbt=0.66 МПа, jb2=0.9. Арматура класса

А-II, Rs=280 МПа. Расчетное сопротивление грунта – R0=0.2 МПа.

Вес единицы объема бетона фундамента и группа на его обрезах j=20 кг/м3.

Высоту фундамента предварительно принимаем равной H=0.5 m; глубину заложения H1=1.05m.

Площадь подошвы фундамента определяем предварительно без поправок R0 на ее ширину и заложения:

A=Nn/R0-j*H1=601.05*103/0.2*103-20*103*1.05=3.36 m2.

Сторона квадратной подошвы а=√A=√3.36=1.87 m.

Принимаем a=2.1m (кратно 0,3).

Давление на грунт от расчетной нагрузки p=N/A=691.21*103/2.1*2.1=156.74 кН/м2.

Рабочая высота фундамента из условия продавления:

h0= - (hcol+bcol)/4 + 1/2√N/Rbt+p= - (0.25+0.25)/4 + ½(√691.21*103/0.9*0.66*106+156.74*103)=0.35m.

Полную высоту фундамента устанавливаем из условий:

- продавления : H=0.35+0.04=0.39 m.

- заделки колонны в фундаменте H=1.5*hcol+0.25=1.5*0.25+0.25=0.65 m.

- анкеровки сжатия арматуры колонны ø25 А – III: H=24*d+0.25=24*0.025+0.25=0.85m.

Принимаем окончательно без пересчета фундамент высотой H=0.9 m, h0=0.86 m – трехступенчатые.

Проверяем, отвечают ли рабочая высота нижней ступени фундамента h02=0.3-0.04=0.36 m условию прочности попречной силе без поперечного армирования в наклонном сечении, начинающимся в сечении III-III.

Для единицы ширины этого сечения (b=1m):

Q=0.5*(a-hcol-2*h0)*p=0.5*(2.1-0.25-2*0.86)*156.74*103=10.19 кН; при с=2,5*h0;

Q=0.6*j2*Rbt*b*h02=0.6*0.9*0.66*106*1*0.26=96.66 кН>Q=10.19 кН – условие прочности удовлетворяется.

Расчетные изгибающие моменты в сечениях I-I и II-II.

MI=0.125*p(a-hcol)2*b=0.125*156.74*103*(2.1-0.25) 2*2.1=140.82 кН*м.

MII=0.125*p(a-a1)2*b=0.125*156.74*103*(2.1-0.9) 2*2.1=59.25 кН*м.

Площадь сечения арматуры:

ASI=MI/0.9*h0*Rs=140.82*103/0.9*0.86*280*106=6.5*10-4 m2.

ASII=MII/0.9*h01*Rs=59.25*103/0.9*0.56*280*106=4.2*10-4 m2.

Принимаем нестандартную сварную сетку с одинаковой рабочей арматурой 9ø10 А-II c As=7.07*10-4 m2 с шагом S=0.25 m.

Процент армирования:

μI=ASI*100/bI*h0=7.07*10-4/0.9*0.86=0.09%

μII=ASII*100/bII*h01=7.07*10-4/1.5*0.56=0.084%

что больше μmim=0.09% и меньше μmax=3%.

6 Расчет монолитного ребристого перекрытия.

Монолитное ребристое перекрытие компонуем с поперечными главнами балками и продольными второстепенными балками.

Второстепенные балки размещаются по осям колони в третех пролете главной балки, при этом пролеты плиты между осями ребер равны: l/3= 5.2/3=1.73 m.

Предварительно задаемся размерами сечения балок: главная балка: высота h=(1/8+1/15)*f=(1/12)*5.2=0.45 m; ширина b=(0.4/0.5)*h=0.45*0.45=0.2 m.

Второстепенная балка: высота h=(1/12+1/20)*l=(1/15)*6=0.4m; ширина b=(0.4/0.5)*h=0.5*0.4=0.2m.

6.1 Расчет многопролетной плиты монолитного перекрытия.

6.1.1 Расчетный пролет и нагрузки.

Расчетный пролет плиты равен расстоянию в свему между гранями ребер l0=1.73-0.2=1.53m, в продольном направлении – l0=6-0.2=5.8 m. Отношение пролетов 5,8/1,53=3,8>2 – плиту рассчитываем как работающую по короткому направлению. Принимаем толщину плиты 0,05 м.

Таблица 3 Нагрузка на 1 м2 перекрытия.

Нагрузка

Нормативная нагрузка,

Н/м2

Коэффициент надежности по нагрузке

Расчетная нагрузка,

Н/м2

Постоянная:

- от собственного веса плиты,

δ=0,05м, ρ=2500 кг/м3

- то же слоя цементного р-ра,

δ=20 мм, ρ=2200 кг/м3

- то же керамических плиток,

δ=0,013 м, ρ=1800 кг/м3

1250

440

230

1,1

1,3

1,1

1375

570

255

Итого

Временная

1920

4000

-

1,2

2200

4800

Полная

5920

-

7000

Для расчета многопролетной плиты выделяем полосу шириной 1 м, при этом расчетная нагрузка на 1 м длины с учетом коэффициента надежности по назначению здания jn=0.95 нагрузка на 1м:

(g+φ)=7000*0.95=6.65 кН/м.

Изгибающие моменты определяем как для многопролетной плиты с учетом перераспределения моментов:

- в средних пролетах и на средних опорах:

М=(g+φ)*l20/16=6.65*103*1.532/16=0.97 кН*м.

- в I пролете и на I промежуточной опоре:

М=(g+φ)*l20/11=6.65*103*1.532/11=1.42 кН*м.

Средние пролеты плиты окаймлены по всему контуру монолитно связанными с ними балками и под влиянием возникающих распоров изгибающие моменты уменьшаются на 20%, если h/l=1/30. При h/l=0,05/1,53=1/31<1/30 – условие не соблюдается.

6.1.2 Характеристика прочности бетона и арматура.

6.1.3 Подбор сечений продольной арматуры.

В средних пролетах и на средних опорах h0=h-a=0.05-0.012=0.038m.

αm=M/Rb*bf*h20=0.97*103/0.9*8.5*106*1*0.0382=0.088

По таблице 3.1[1] находим η=0,953

As=M/Rs*bf*h0=0.97*103/370*106*0.95*0.038=0.72*10-4 m2.

Принимаем 6ø4 Вр-I с As=0.76*10-4 m2 и соответствующую рулонную сетку марки:

(4Bp-I-100/4Bp-I-200)2940*Lc1/20

В I пролете и на I промежуточной опоре h0=0.034 m

αm=1.42*103/0.9*8.5*106*1*0.034=0.161 ; η=0,973

As=1.42*103/370*106*0.913*0.034=1.24*10-4 m2. – принимаем две сетки – основную и той же марки доборную.

6.2 Расчет многопролетной второстепенной балки.

6.2.1 Расчетный пролет нагрузки.

Расчетный пролет равен расстоянию в свету между главными балками l0=6-0.2=5.8 m.

Расчетные нагрузки на 1 м длины второстепенной балки:

постоянная:

- собственного веса плиты и поля: g1=2200*1.73=3.81 кН/м

- то же балки сечением 0,2х0,35 м,

g=2500 кг/м3, g2=0.2*0.35*25000=1.75 кН/м.

Итого: g=g1+g2=(3,81+1,75)*103=5.56 кН/м. С учетом коэффициента надежности по назначению здания jn=0.95: g=5.56*103*0.95=5.28 кН/м.

Временная с учетом jn=0.95: φ=4800*1,73*0,95=7,89 кН/м.

Полная нагрузка: g+ φ=(5.28+7.89)*103=13.17 кН/м.

6.2.2 Расчетные усилия.

Изгибающие моменты опираем как для многопролетной балки с учетом перераспределении моментов.

В I пролете М=(g+ φ)*l20/11=13.17*103*5.82/11=40.27 кН*м.

На I промежуточной опоре М=13.17*103*5.82/14=31.64 кН*м.

В средних пролетах и на средних опорах: М=13,17*103*5,82/16=27,69 кН*м.

Отрицательные моменты в средних пролетах зависит от отношения временной нагрузки к постоянной. При φ/g=7.88*103/5.28*103=1.5<3 отрицательный момент в среднем пролете можно принять равным 40% от момента на I промежуточной опоре Q=31.64*103*0.4=12.66 кН*м.

Поперечные силы на крайне опоре Q=0.4*(g+ φ)*l0=0.4*13.17*103*5.8=30.55 кН. На I промежуточной опоре слева Q=0.6*13.17*103*5.8=45.83 кН; на I промежуточной опоре справа

Q=0.5*13.17*103*5.8=38.19 кН.

6.2.3 Характеристики прочности бетона и арматуры.

Бетон класса В15; Rb=8.5 МПа; Rbt=0.75 МПа; jb2=0.9;

Арматура : продольная класса А-III с Rs=365 МПа;

Поперечная арматура класса Вр-I диаметром ø5Вр-I, Rsw=260 МПа.

6.2.4 Расчет прочности второстепенной балки по сечениям, нормальным к продольной оси.

Высоту сечения балки уточняем по опорному моменту при ζ=0,35, поскольку на опоре момент определен с учетом образования пластического шарнира.

По таблице 3.1[1] при ζ=0,35 находим αm=0.289 и определяем рабочую высоту сечения балки:

h0=√M/ αm*Rb*b=√31.64*103/0.289*0.9*8.5*106*0.2=0.23 m.

Полная высота сечения h0=h0+a=0.23+0.035=0.265 m. – принимаем h=0.3 m; h0=0.265 m.

Сечение в I пролете, М=40,27 кН*м, h0=0.265 m

αm=M/Rb*bf*h20=40.27*103/0.9*8.5*106*2*0.2652=0.037

По таблице 3.1[1] находим: η=0,981; ζ=0,04; х= ζ*h0=0.04*0.265=0.011 m.< 0.05 m – нейтральная ось проходит в пределах сжатой полки.

Сечение арматуры: As=M/Rs*h0* η=40.27*103/365*106*0.981*0.265=4.24*10-4 m2.

Принимаем 2ø18А-III c As=3.09*10-4 m2.

Сечение в среднем пролете, М=27,69 кН*м.

As=27.69*103/365*106*0.981*0.265=2.92*10-4 m2.

Принимаем 2ø14А-III c As=3.08*10-4 m2.

На отрицательный момент М=12,66 кН*м сечения работает как прямоугольное:

αm= M/Rb*b*h20=12.66*103/0.9*8.5*106*0.2*0.2652=0.118; η=0,938;

As=12.66*103/365*106*0.938*0.265=1.4*10-4 m2.

Принимаем 2ø10А-III c As=1.57*10-4 m2.

Сечение на I промежуточной опоре, М=31,64 кН*м.

αm=31.64*103/0.9*8.5*106*0.2*0.2652=0.294; η=0,82;

As=31,64*103/365*106*0.82*0.265=3.99*10-4 m2.

Принимаем 6ø10А-III c As=4.71*10-4 m2. – две гнуты сетки по 3ø10А-III в каждой.

Сечение на средних опорах, М=27,69 кН*м

αm=27.69*103/0.9*8.5*106*0.2*0.2652=0.258; η=0,847;

As=27,69*103/365*106*0.847*0.265=3.38*10-4 m2.

Принимаем 5ø10А-III c As=3.92*10-4 m2.

6.2.5 Расчет второстепенной балки по сечениям, наклонным к продольной оси.

Q=45.63 кН.

Диаметр поперечных стержней устанавливаем из условия сварки с продольной арматурой ø18 мм и принимаем равным ø5 мм класса Вр-I c As=0.196*10-4 m2. Число каркасов два, при этом Asw=2*0.196*10-4=0.392*10-4 m2.

Шаг поперечных стержней по конструктивным условиям S=h/2=0.3/2=0.15 m. На всех приопорных участках длиной 0,25l принимаем шаг S=0.15 m; в средней части пролета S=(3/4)*h=0.75*0.3=0.225≈0.25 m.

Вычисляем: qsw=Rsw*Asw/S=260*0.392*10-4/0.15=67.95 кН/м; влияние свесов сжатой полки

φf=0.75*3hf*hf/b*h0=0.75*3*0.05*0.05/0.2*0.265=0.11<0.5;

Qbminb3*(1+φf)*Rbt*b*h0=0.6*1.11*0.9*0.75*106*0.2*0.265=23.83 кН; условие

ζsw=67.95 кН/м>Qbmin/2*h0=23*83*103/2*0.265=44.96 кН/м – удовлетворяется.

Требование: Smax= φb4*Rbt*b*h0/Qmax=1.5*0.9*0.75*106*0.2*0.2652/45.83*103=0.31m>S=0.15m – выполняется.

При расчете прочности вычисляем:

Mb= φb3*(1+φf)*Rbt*b*h02=2*1.11*0.9*0.75*106*0.2*0.2652=21.05 кН*м. При

q1=g+φ/2=(5.28+7.89/2)*103=9.23 кН/м.<0.56*qsw=0.56*67.95*103=38.05 кН/м – в связи с этим выполняется значение (с) по формуле:

с=√Mb/q1=√21.05*103/9.23*103=1.5m>3.33h0=3.33*0.265=0.88m – принимаем с=0,88 м, тогда

Qb=Me/c=21.05*103/0.88=23.92 кН> Qbmin=23.83 кН.

Поперечная сила в вершине наклонного сечения Q=Qmax-q1*c=45.83*103-9.23*103*0.88=37.71 кН. Длина проекции расчетного наклонного сечения с0=√Mb/qsw=√21.05*103/67.95*103=0.56m>2*h0=2*0.265=0.53 m – принимаем с0=0,53 м. Тогда Qsw=qsw*c0=67.95*103*0.53=36.01 кН>Q=37.71 кН –удовлетворяется.

Проверка по сжатой наклонной полосе:

μw=Asw/b*S=0.392*10-4/0.2*0.15=0.0013;

αs=Es/Eb=170*109/23*109=7.4;

φw1=1+5* αs*μ=1+5*7.4*0.0013=1.05;

φb1=1-0.01*Rb=1-0.01*0.9*8.5=0.92;

Условия прочности:

Qmax=45.83 кН≤0.3* μb1*Rb*b*h0=0.3*1.05*0.92*0.9*8.5*106*0.2*0.265=117.5 кН – удовлетворяется.

Характеристики

Тип файла
Документ
Размер
248,5 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6361
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее