83 (641426), страница 3
Текст из файла (страница 3)
При выборе питающих трансформаторов необходимо учесть, что наиболее тяжелым для них является ПАР, когда вся нагрузка приходится на один трансформатор. Следовательно, выбор питающих трансформаторов производим по ПАР.
Sнг.max=3634 кВА
Котн.нг=0,55
Sнг= Sнг.max/Котн.нг=3634/0,55=6607 кВА
Ориентировочная мощность:
Sтр≥Sнг/2·Кз.мах=6607/2·0,8=2643 кВА
Для ЦИП выбираем трансформаторы:
ТМН-6,3: ВН=115 кВ; НН=6,3 кВ; Рхх=13 кВт; Ркз=50 кВт; Iхх=1%; Uк=10,5%;
ТМН-6,3: ВН=53 кВ; НН=6,3 кВ; Рхх=9,4 кВт; Ркз=46,5 кВт; Iхх=0,9%; Uк=7,5%;
8.Расчет потерь напряжения и мощности в трансформаторах.
Так как трансформаторы имеют значительное внутреннее сопротивление, то имеем потери напряжения в трансформаторе. Потери напряжения наиболее удобно определять в относительных величинах.
ΔUт*=Rт**Pнг*+Хт**Qнг*
Rт* – активное относительное сопротивление тр-ра: Rт*=Pr/Sном
Хт*– относительное индуктивное сопротивление тр-ра
Pнг* и Qнг*– относительные активная и реактивная нагрузки:
Pнг*= Pнг/Sном.тр Qнг*= Qнг/Sном.тр
Трансформаторы являются потребителями реактивной мощности:
Sнг*=Sнг.мах/Sном
Потери активной мощности:
ΔP=P0+Pk*Sнг*²
Рассмотрим пример расчета для ТП2:
Рк=0,88 кВт; Р0=0,17 кВт; Uк=4,5%; Iхх=3%;
S=47 кВА
Находим Rт=0,88/40=0,022
Хт*=0,039
Pнг*=38/40=0,95; Qнг*=28/40=0,7; ΔUт*=0,022 · 0,95+0,39 · 0,7=0,0482
ΔUт=4,8%=18 В
Р=0,17+0,88*0,3481=0,48 кВт*2=0,96 кВт
Аналогично рассчитываем потери напряжения и мощности для остальных трансформаторов и заполняем таблицу 4.
Таблица 4
| Кол-во трансформаторов | Тип трансформатора | U, кВт U, B U, % | |
| 2. 38+j28 3. 52+j36 4. 59+j33 5. 124+j103 6. 117+j87 7. 580+j337 8. 535+j475 | 2 | ТМ-40 | 0.88 0.17 4.5 3.0 0.59 0.96 3.7 9 2.4 1.28 0.24 4.5 2.8 0.51 1.15 5 7.5 1.9 1.28 0.24 4.5 2.8 0.54 1.22 5.18 7.5 19 2.65 0.52 4.5 2.4 0.5 2.36 11.28 7.5 1.9 1.97 0.33 4.5 2.6 0.73 2.76 10 11 2.8 7.6 1.42 5.5 2.0 7.6 1.42 5.5 2.0 0.54 0.57 7.24 7.78 45.4 47.72 7.2 9.5 2 2.5 |
| 2 | ТМ-63 | ||
| 2 | ТМ-63 | ||
| 2 | ТМ-160 | ||
| 2 | ТМ-100 | ||
| 2 | ТМ-630 | ||
| 2 | ТМ-630 | ||
| 9. 357+j226 10. 488+j231 11. 602+j377 12. 26+j18 | 2 | ТМ-400 | 5.5 5.5 7.6 0.6 0.6 0.92 2.92 1.42 0.13 0.13 4.5 4.5 5.5 4.5 4.5 2.3 2.3 2.0 3.2 3.2 0.54 0.69 0.57 1.28 1.12 5.05 7.08 7.78 1.11 0.88 28.9 35.54 74.72 2.64 2.21 7 8 8.5 20 18 1.84 2.1 2.2 5.23 4.64 |
| 2 | ТМ-400 | ||
| 2 | ТМ-630 | ||
| 1 | ТМ-25 | ||
| 13. 23+j16 | 1 | ТМ-25 |
ΔU для двух трансформаторных подстанций следует разделить на 2.
Вывод: ΔР и ΔQ можно усреднить:
ΔР=3,78 кВт
ΔQ=20,4 квар
И в дальнейшем не усложнять себе работу лишними расчетами.
ΔU в двух трансформаторных подстанциях составляет в среднем 2,2%, а у одно-трансформаторных подстанций ΔU=4,9%
2,2%<4,9%
То есть потери в одно-трансформаторных подстанциях почти в 2,2 раза больше чем у двух трансформаторных подстанций. Это происходит по тому, что двух трансформаторные подстанции работают в нагруженном режиме.
9. Определение присоединенной нагрузки с учетом потерь мощности в трансформаторах.
Присоединенная нагрузка определяется с учетом количества электрических приемников питаемых от ТП, плюс потери в трансформаторе.
Пример расчета для ТП2 (РСБН-У): мощность электроприемников:
Sнгмах=47 кВА
Потери: Р=38 кВт Q=28 квар
ΔР=0,96 кВт ΔQ=3,7 квар
Мощность нагрузки:
∑Р=Р+ΔР=38+0,96=38,96кВт
∑Q=Q+ΔQ=28+3,7=31,7квар
Р+jQ=38.96+j31,7, так как на ТП2 2 трансформатора, то вся нагрузка приходится на 2 линии. Составим таблицу 5 с учетом потерь.
Таблица 5
| № ТП | Кол-во тр-ов | Полная нагрузка | Нагрузка на одну линию |
| 2. | 2 | 38,96+j31,7 | 19,48+j15,85 |
| 3. | 2 | 53,15+j41 | 26,58+j20,5 |
| 4. | 2 | 60,22+j38,18 | 30,11+j19,09 |
| 5. | 2 | 126,36+j114,28 | 63,18+j57,14 |
| 6. | 2 | 119,76+j97 | 59,88+j48,5 |
| 7. | 2 | 587,27+j382,4 | 293,64+j191,2 |
| 8. | 2 | 542,78+j522,72 | 271,39+j261,36 |
| 9. | 2 | 362,05+j254,9 | 181,03+j127,45 |
| 10. | 2 | 495,08+j266,54 | 247,54+j133,27 |
| 11. | 2 | 609,78+j424,72 | 304,89+j212,36 |
| 12. | 1 | 27,11+j20,64 | 27,11+j20,64 |
| 13. | 1 | 23,88+j18,21 | 23,88+j18,21 |
10. Расчет потока мощности по участкам в рабочем режиме.
3
ТП11
4
ТП12
5
ТП13
Л6 0,72
Л7
4
2
Л2 ТП3
Л8; 0,81
Л12
Л13
Л14
ТП1
1
ТП2
0,66
Л5
610+ j425
8
ТП10
27+j21
24+j18
30+j19
248+j134
0,76
Л1
Л3 0,07
7
ТП10
303+j32
53+j41
6; ТП4
Л4
1,68
0,54
Л9
1
ТП5
2
ТП6 тп
3
ТП7
4
ТП8
5
ТП9
6
ТП4
1,01
Л10
Л11
1,01
0,75
0,54
0,19
0,56
126+j134
120+j97
587+j382
543+j523
326+j255
30+j19
Sл1=(1279+j824)кВА Sл8=248+j134
Sл2=1240+j792 Sл9=1768+j1390
Sл3=278+j153 Sл10=1642+j1276
Sл4=248+j134 Sл11=1522+j1179
Sл5=909+j598 Sл12=935+j797
Sл6=51+j39 Sл13=392+j274
Sл7=24+j18 Sл14=30+j19
1, 2...– номера точек при расчете токов короткого замыкания на ЭВМ.
– коэффициенты схемы (КС).
11.Расчет сечений кабелей высоковольтной сети аэропорта в рабочем режиме.
Сечение проводов высоковольтной линии электропередачи, рекомендуется выбирать по экономической плотности тока, т.е. такой плотности при которой расчетные затраты получаются минимальными.
В ПУЭ для определения экономического сечения проводов линии рекомендуется пользоваться формулой: Fэк=Imax/ Jэк
Imax – максимальная нагрузка при нормальной работе сети.
Jэк – экономическая плотность тока А/мм², берется в зависимости от материала, конструкции кабеля и Тн (число часов использования максимально активной нагрузки).
Пример расчета сечения кабеля на участке 1 (линия 1).
Суммарная мощность:∑S=1279+j824=1521кВА, Код=0,8
Найдем рабочий ток:
I1p=117 A
Так как кабель алюминиевый с бумажной изоляцией (пропитанной) принимаем:
Jэк=1,6А/мм² (Тм=3000 часов)
Находим сечение: Fэк= Imax/ Jэк=117/1,6=73мм²
Стандартное ближайшее значение Fст=70мм² с Iдд=190 А. Как видим, кабель проходит по току.
Составляем таблицу 6 значений остальных сечений сети для рабочего режима:
Таблица 6
| №, лин | Мощность на участке | Мощность на участке х Код | l, км | Ro, Ом/км | Хо, Ом/км | Код | Iраб, А | Fрасщ, мм² | Fст, мм² | Iдд, А |
| 1. | 1279+j824 | 1023+j659 | 1,68 | 0,44 | 0,086 | 0,8 | 117 | 73 | 70 | 190 |
| 2. | 1240+j792 | 1091+j697 | 0,66 | 0,44 | 0,086 | 0,81 | 115 | 78 | 70 | 190 |
| 3. | 278+j153 | 278+j153 | 0,57 | 1,94 | 0,113 | – | 31 | 19 | 16 | 80 |
| 4. | 248+j134 | 248+j134 | 0,54 | 1,94 | 0,113 | – | 27 | 17 | 16 | 80 |
| 5. | 909+j598 | 818+j538 | 0,76 | 0,62 | 0,09 | 0,9 | 94 | 59 | 50 | 155 |
| 6. | 51+j39 | 51+j39 | 0,72 | 3,1 | 0,112 | – | 6 | 4 | 10 | 60 |
| 7. | 24+j18 | 24+j18 | 4 | 3,1 | 0,112 | – | 3 | 2 | 10 | 60 |
| 8. | 248+j134 | 248+j134 | 0,81 | 1,94 | 0,113 | – | 27 | 17 | 16 | 80 |
| 9. | 1768+j1390 | 1503+j1182 | 1,21 | 0,26 | 0,081 | 0,81 | 175 | 115 | 120 | 260 |
| 10. | 1642+j1276 | 1478+j1148 | 1,01 | 0,26 | 0,081 | 0,92 | 164 | 113 | 120 | 260 |
| 11. | 1522+j1179 | 1370+j1061 | 0,75 | 0,33 | 0,083 | 0,95 | 157 | 104 | 95 | 225 |
| 12. | 935+j797 | 842+j717 | 0,54 | 0,44 | 0,086 | 0,9 | 106 | 66 | 70 | 190 |
| 13. | 392+j274 | 392+j274 | 0,29 | 1,24 | 0,099 | – | 46 | 29 | 25 | 105 |
| 14. | 30+j19 | 30+j19 | 0,56 | 3,1 | 0,122 | – | 3 | 2 | 10 | 60 |
Проверим данную сеть на потери напряжения. В сети 6 кВ они должны быть ΔU=(6–8)%.
Потери напряжения находим по формуле ΔU=(∑Рлі*Rлі*li+∑ Qлі*Xлі*li)/U
Расчет ведется по наиболее удаленной точке сети и с учетом Код.
Самой удаленной точкой линии является ТП13 U=342 В
Это составляет 5,7% и удовлетворяет условию ΔUдоп=6%
12. Расчет низковольтной сети.
Этот расчет ведется по допустимой потере напряжения и по минимуму массы проводов. Требования ГОСТ 13109-76 можно удовлетворить, если потери напряжения в отдельных элементах сети не будет превышать некоторых допустимых значений.
Петлевая сеть: (штаб, столовая).
ТП10 Л1 Штаб Л8 Стол. Л3 ТП10
86+j16
0.3
0.1
0.13
73+j9
Л2 в рабочем режиме не участвует. Примем ΔUдоп=4,5%=17,1В. Потеря напряжения на индуктивном сопротивлении линии:
ΔUх1=(Хо∑Q*l)/U=(0,06*9*0,3)/0,38=0,43 В
ΔUх2=(0,06*16*0,1)/0,38=0,25 В
ΔUх3=(0,06*16*0,32)/0,38=0,81 В
Допустимые потери на активном сопротивлении линии:
ΔUа доп1= ΔUдоп-ΔUх=17,1-0,43=16,67 В
ΔUа доп2=17,1-0,25=16,85 В
ΔUа доп3=17,1-0,81=16,29 В
F1=(ρ*∑li*Pi)/(ΔUа доп.* ΔUн)=121 мм²; F2=47 мм²; F3=155 мм²
F1ст=120 мм²; F2ст=50 мм²; F3ст=150 мм²
Iдд=270 А > Ip=111 A
Iдд=165 А
Iдд=305 А > Ip=133 A
Проверим по ΔU
ΔU1=15 В Это составляет 4,1% < ΔUдоп =4.5%
ΔU3=16 В Это составляет 4,2% < ΔUдоп =4.5%
Проверим ПАР:
Л1
Л2
0,3
0,1
73+j9
86+j16
I1пар=244 А < Iдд проходит
I2пар=133 А < Iдд проходит
Проверим потерю напряжения:
ΔU=48,7 В
Это составляет 10,9% > 4,5%+5%=9,5%
Увеличиваем Л1: Fст=150мм² Iдд=305 А
Увеличиваем Л2: Fст=120мм² Iдд=270 А
ΔU=37 В
Это составляет 8,9% < 9,5%
Обрыв Л1
Расчет аналогичен предыдущему
ΔU=35,5 В; Это составляет 9,3% < 9,5% – проходит
ΔU=12,5 В; Это составляет 3,3% < 4,5% – проходит
Низковольтная сеть. (3 мат. склада.)
Л1
Л2
Л3
0,14
0,1
0,1
31+j12
31+j12
31+j12
Iр1=76 А; Iр2=50 А; Iр3=26 А;
ΔUх=0,86 В; ΔUа.доп.=17,1-0,68=16,42 В
F
1=36 мм²; Fст =35мм²; Iдд=135 А
F
2=18 мм²; Fст =16мм²; Iдд=90 А
F
3=9 мм²; Fст =10мм²; Iдд=65 А
ΔU=45 В; 11,8% > 9.5% не подходит.
Подбираем другие сечения
F1, 2, 3=50 мм²; Iдд=165 А;
ΔU=15,9 В; 4,2% < 4,5%;
Рассмотрим ПАР:
I1пар=151 А
I2пар=101 А
I3пар=50 А
ΔU=32 В
Это составляет 8,4% и удовлетворяет условие ΔUдоп=9,5%;
Низковольтная сеть (ГРМ).
0.3
I
30+j23
p=29 A; ΔUх=0,54 В;ΔUдоп=17,1- 0,54=16,56 В9
F
=25 мм²; Fст =25мм²; Iдд=115 А;
ΔU=15,2 В; 4% < 4,5%;
В ПАР: Iпар=57 А;
ΔU=30 В; 8% < 9,5%;
13. Расчет токов короткого замыкания.
Расчет Iк.з на шинах силового трансформатора на низкой стороне.
Используя таблицу, принимаем среднее геометрическое расстояние между проводом 0,4 мм, Х0=0,4 Ом/м для проводов марки АС линии эллектро передач. Относительное реактивное сопротивление:
Xл1*=0,361
Хл2= 2,226;
Относительное индуктивное сопротивление трансформаторов:
Хтр*1=Uк1/100*Sб/ Sном=0,4*40*300/1,1*12100=5
Хтр*2=3,57
Точки короткого замыкания:
Iк1*’’’=Е*/(Хс”+Xл1*+Хтр*1)=0,18
Iкз1*’’’=5,18 кА
Iк2*’’’=0,16
Iкз2*’’’=4,6 кА
14. Проверка термической устойчивости кабеля от действия тока короткого замыкания.
Для расчета берем кабель, у которого сечение имеет наибольшую разницу с предыдущим сечением. Для примера возьмем высоковольтный кабель с F=10мм², Iдд=60 А, Iр=6 А на линии 6, Ік’’’=0.95 кА
Определим первоначальную температуру кабеля:
Qнач=Δt(Iр/ Iдд)²+tокр. ср.
Qнач=Qдд-Qном=60-15=45°С
Qдд=60°С; Qном=15°С
Q=15°С
По графику находим при Q=15°С; Ан=1500(А²*с)/(мм²)
Зная max допустимую температуру нагрева алюминия, находим Акз.
При нагреве кабеля при токе короткого замыкания до температуры Qкз=200°С величина Акз.’=14000 (А²*с)/(мм²)
Тогда ΔА=Акз.’-Ан=12500(А²*с)/(мм²)
Зная это значение можно определить допустимое значение времени короткого замыкания, за которое кабель нагреется до Qдоп
t=ΔА*F²/ Iкз²=1,4 с
По результатам можно сделать вывод, что при установке защиты на этом участке, при коротком трехфазном замыкании защита должна сработать меньше чем за 1,4 с, иначе будет наблюдаться перегрев кабеля, что приведет к разрушению изоляции и пробою кабеля на этом участке.
15.Закон регулирования напряжения.
Закон регулирования напряжения необходим для обеспечения качества электроэнергии (напряжения) в электросети. Для этого необходимо выбрать две точки сети: наиболее «близкую» и наиболее удаленную в электрическом отношении от источника питания. Если потери в линии до данного объекта превышают 2,5%, то их можно регулировать отпайками трансформатора. Нам задан диапазон регулирования на шинах питающей подстанции, в зависимости от колебания нагрузки.
Потери в линиях рассчитываем по формуле ΔUl=(Pлi*Roi+Qлi*Xoi)*li/Uн
ΔU1=137 В; 2,3%. ΔU2=52 В; 0,9%.
ΔU3=18 В; 0,3%. ΔU4=45 В; 0,7%.
ΔU5=78,2 В; 1,3%. ΔU6=19,54 В; 0,3%.
ΔU7=51,1 В; 0,9%. ΔU8=67 В; 1,1%.
Анализируя схему аэропорта, и просчитав потери в элементах сети принимаем, что в роли ближних точек будут: Б1 – РСБН-У (ТП2)
Б2 – автобаза (ТП10),
а в роли дальних: Д1 – ГРМ
Д2 – столовая
Л1
Л4
Л5 Л3
Б1
Д1(ГРМ)
Д2(Столовая)
Б2
То
Т1
Т3
Схема для расчета закона регулирования
Все потери в линиях обозначены на рисунке 9. Сечение линий приведены в таблице 6. Отклонения напряжения на линиях питающей подстанции при Imax+7%, при Imin+2%. Потери в высоковольтной линии:
до ТП2: ΔUвв max=2,3%;
до ТП3: ΔUвв max=3,2%;
до ТП10: ΔUвв max=5,6%.
Потери низковольтной линии:
Д1: ΔUнв max=4%;
Д2: ΔUнв max=4,2%.
Так как соотношения токов при максимуме и минимуме нагрузки по заданию при Imax/ Imin=3, то чтобы найти потери при минимуме нагрузки, максимальные потери соответственно нужно уменьшить:
до ТП2: ΔUвв min=0,77%;
4>














