160958 (633693), страница 4
Текст из файла (страница 4)
По сравнению с ценой, которая реально существует и объективна (объявлена и товар по ней равнодоступен любому участнику рынка капитала), внутренняя стоимость гораздо более неопределенна и субъективна. Каждый инвестор имеет свой взгляд на внутреннюю стоимость актива, полагаясь в ее оценке на результаты собственного субъективного анализа.
Возможны три ситуации:
Pm > Vo, то с позиции конкретного инвестора данный актив продается в настоящий момент по завышенной цене и нет смысла в его приобретении.
Pm < Vo, то цена занижена есть интерес в его покупке.
Pm = Vo, то смысл в проведении спекулятивных операций на рынке отсутствует, поскольку цена полностью отражает внутреннюю стоимость финансового актива.
Вследствие этого, целесообразно провести различия между ценой и стоимостью финансового актива.
Стоимость - это расчетный показатель, а цена - это декларированный или объявленный в прейскурантах, котировках показатель.
В любой конкретный момент цена однозначна, а стоимость многозначна. Число оценок стоимости зависит от числа профессиональных участников рынка.
С известной долей условности можно утверждать, что стоимость первична, а цена вторична, поскольку в условиях равновесного рынка цена количественно выражает внутреннюю стоимость актива и устанавливается стихийно, как средняя из оценок стоимостей, рассчитываемых инвесторами.
Существуют три основные теории оценки внутренней стоимости финансового актива:
-
Фундаменталистская теория является наиболее распространенной, согласно ей внутренняя стоимость любой ценной бумаги может быть оценена как дисконтированная стоимость будущих поступлений, генерируемых этой бумагой.
V0 =
(Б)
где Vo – текущая или приведенная стоимость активов;
CFt- ожидаемый денежный поток в периоде t;
-
приемлемая (ожидаемая или требуемая) доходность в периоде «t»
n- число периодов, в течении которых ожидается поступление денежных средств.
Как видно из формулы, теоретическая стоимость зависит от трех параметров:
Первые два параметра привязаны к базовому активу и поэтому более объективны. Последний параметр наиболее существенный, т.к. отражает доходность альтернативных вариантов вложения капитала, доступных данному инвестору, что предопределяет вариабельность этого параметра. Приемлемая норма доходности может устанавливаться инвестором следующим образом:
-
в размере процентной ставки по банковским депозитам;
-
исходя из процентной ставки по депозитам и надбавки за риск инвестирования в данный финансовый актив;
-
исходя из процентов, уплачиваемых по государственным облигациям и надбавки за риск.
Базовую модель оценки финансовых активов (DCF-модель) можно представить в виде следующей схемы:
Текущую приведенную стоимость актива (PV0) можно определить как:
PV0 = +
+ . . .
+ . . . +
=
,
где CFt - ожидаемые денежные поступления в момент t;
rt - требуемая доходность в момент t;
n - число периодов, в течение которых ожидается поступление денежных средств.
-
Технократическая. Предполагает определение текущей внутренней стоимости ценной бумаги на основании анализа динамики ее цены в прошлом, базируясь на статистике цен, данных о котировках и т.п.
-
Теория «Ходьбы наугад». В ее основе лежит гипотеза эффективных рынков, предполагающая, что текущие цены финансовых активов гибко отражают всю релевантную информацию, в том числе и относительно будущего ценной бумаги.
Оценка долговых ценных бумаг
Облигации могут выпускаться в обращение государством или корпорациями. Облигации приносят их вкладчикам доход в виде фиксированного процента к номинальной стоимости, но бывают и облигации с плавающей ставкой, меняющейся по некоторому алгоритму. Они могут быть охарактеризованы различными стоимостными показателями:
-
Нарицательная стоимость;
-
Конверсионная стоимость;
-
Выкупная цена - отзывная цена, по которой производится выкуп облигаций эмитента до момента погашения;
-
Рыночная (курсовая) цена облигации определяется конъюнктурой рынка; значение рыночной цены в процентах к номиналу называется курсом облигации.
-
Оценка облигации с нулевым купоном.
Поскольку денежные поступления по годам, кроме последнего, равны нулю, стоимость облигации с позиции инвестора равна:
V = Рн*FM
(r,n), (Б.1)
где Рн - номинальная стоимость, выплачиваемая при погашении;
n - число лет, через которое происходит погашение облигаций;
r - ожидаемая или требуемая доходность.
-
Оценка бессрочных облигаций представляет собой неопределенно долгую выплату дохода в установленном размере. Воспользуюсь формулой вечного аннуитета, найдем теоретическую бессрочной облигации:
V =
(Б.2)
-
Оценка безотзывных облигаций с постоянным доходом. Денежный поток в этом случае складывается из одинаковых по годам денежных поступлений «С» и нарицательной стоимости облигации «Р
», выплачиваемой в момент погашения.
V = С*FM
(r,n) + Р
*FM
(r,n) (Б.3)
В экономически развитых странах распространенными являются облигации с полугодовой выплатой процентов. Они более привлекательны, так как инвесторы при этом более защищены от инфляции, имеют возможность получения дополнительного дохода от реинвестирования получаемых процентов. Внутренняя стоимость облигации с выплатой процентов каждые полгода:
V =
*FM
(
,2n) + Р
*FM
(
,2n) (Б.4)
Выводы относительно поведения цены облигации на рынке ценных бумаг:
-
Если рыночная норма доходности превосходит фиксированную купонную ставку, облигация продается со скидкой (дисконтом) , т.е. по цене ниже номинала;
-
Если рыночная норма доходности меньше фиксированной купонной ставки, то облигация продается с премией, т.е. по цене выше номинала;
-
Если рыночная норма доходности совпадает с фиксированной купонной ставкой, облигация продается по нарицательной стоимости;
-
Рыночная норма доходности и текущая цена облигации с фиксированным купоном находятся в пропорциональной зависимости.
-
Оценка отзывных облигаций с постоянным купоном
Любое привлечение заемных средств сопряжено с затратами по обслуживанию долга – в виде уплачиваемых процентов. Если в результате изменения экономической ситуации рыночная норма доходности значительно упала и ее повышение в обозримом будущем не предвидится, то компания-эмитент несет относительно большие расходы, чем могла бы и ей выгодно досрочно погасить старый заем и затем разместить новый с более низкой процентной ставкой. Поэтому некоторые займы могут выпускаться с условием их досрочного погашения. Для облигаций таких займов в условиях эмиссии устанавливается выкупная цена ( P
), по которым облигации могут быть отозваны с рынка и, как правило, равная сумме нарицательной стоимости и годовых процентов:
P
= Р
+ годовые проценты
Инвесторы тоже хотят подстраховаться, чтобы долгосрочный заем не превратился в краткосрочный. Поэтому условия досрочного погашения облигаций включают:
-
продолжительность периода защиты, в течение которого отзыв запрещен;
-
объем отзываемых облигаций;
-
график погашения и т.д.
Оценка отзывных облигаций также может осуществляться по формулам (Б.3, Б.4), в которых нарицательная стоимость может быть заменена выкупной ценой.
Оценка долевых ценных бумаг
Как и для облигаций, различают несколько количественных характеристик, используемых для оценки акций:
-
Внутренняя стоимость (расчетный показатель по формуле Б);
-
Номинальная цена (указана на бланке акции);
-
Балансовая стоимость может быть рассчитана по балансу как отношение стоимости акционерного капитала (АК) к общему числу выпущенных акций;
-
Конверсионная стоимость определяется для привилегированных акций, в условиях эмиссии которых предусмотрена возможность их конвертации;
-
Ликвидационная стоимость определяется в момент ликвидации общества;
-
Эмиссионная стоимость, по которой акции продаются на первичном рынке;
-
Курсовая цена - рыночная текущая цена, имеющая для учета и анализа наибольшее значение, т.к. по ней акции котируются на вторичном рынке.
Оценка целесообразности приобретения акций также предполагает расчет теоретической стоимости акций и сравнение ее с текущей рыночной ценой. Теоретическая стоимость акций может быть рассчитана по формуле Б, исходя из оценки будущих поступлений. В зависимости от предполагаемой динамики дивидендов конкретное представление формулы может меняться:
-
Дивиденды не меняются, тогда теоретическая стоимость определяется аналогично бессрочным облигациям (Б.2):
Vt =
-
Дивиденды возрастают с постоянным темпом прироста, тогда теоретическую стоимость акции можно определить по модели Гордона:
Vt = , (Б.5)
где D –базовая величина дивиденда;
g – ежегодный темп прироста дивиденда;
r – требуемая (ожидаемая) норма доходности.
Дивиденды возрастают с изменяющимся темпом прироста, тогда в расчете теоретической стоимости пытаются разбить интервал прогнозирования на подинтервалы, каждый из которых характеризуется собственным темпом прироста.
В теории и практики оценки акций описана и получила широкое распространение ситуация, когда темпы прироста дивидендов в течение нескольких лет прогнозного периода меняются бессистемно, а начиная с k+1 темп прироста дивидендов становится постоянным. Считается, что такое развитие событий характерно для компаний, находящихся в стадии становления, либо уже зрелых компаний, осваивающих новые виды продукции или рынки сбыта. Наиболее общая постановка задачи в этом случае такова:
D
D
… D
D
D
D
D
… D