182194 (632250), страница 2
Текст из файла (страница 2)
Графиками в статистике называются условные изображения геометрическими и другими символами данных для их лучшего восприятия и чтения, а также для наглядной характеристики соотношений и связей между изучаемыми явлениями. Графики позволяют увидеть статистические данные в обобщённом виде и в сравнении друг с другом. Основные элементы графика: 1.Название, то есть указание сущности изображаемого явления. 2. Указание места и времени, к которым явление относится. 3. Необходимо определить форму графика. 4. Выбрать масштаб. 5. Принять условные обозначения. 6. Определить шкалу. Масштаб – отрезок условно принятый за единицу. Шкала - линия отдельным точкам которого соответствуют цифровые данные.
18. Виды графиков
1. Линейные диаграммы - строятся в системе координат по оси х откладываются отрезки соответствующие датам или периодам времени, а по оси Y откладываются уровни ряда динамики или темпы их изменения. Линейные диаграммы применяются для характеристики, оценки выполнения плана.
2. Столбиковые диаграммы- имеют одинаковое основание по оси х, а высота их равна числовым значениям уровней признаков. Столбики располагаются в плотную или раздельно на одинаковым расстояниям. Столбиковые диаграммы используются для сравнения по тер., по разным фирмам.
3. Секторные (круговые, структурные) диаграммы- используются для характеристики структуры явления. Для построения используется круг который нужно разделить на секторы пропорционально удельному весу частей в целом. Сумма идеального веса равна 100%, что соответствует общему объёму изучаемого явления. Размер каждого сектора определяется по величине угла с учётом, что 1% пропорционально = 3,6 градуса. 4. Ленточные (прямолинейные, полосовые) диаграммы. Способ построения такой же как у столбиковых стой лишь разницей, что основные полосы находятся по оси Y, а по оси х масштабная шкала.
19. Абсолютные статистические величины
Абсолютными в статистике называются суммарные обобщающие показатели, характеризующие размеры (уровни, объемы) общественных явлений в конкретных условиях места и времени. Различают два вида абсолютных величин: индивидуальные и суммарные. Индивидуальными называют абсолютные величины, характеризующие размеры признака у отдельных единиц совокупности. Они получаются непосредственно в процессе статистического наблюдения и фиксируются в первичных учетных документах. Суммарные абсолютные величины характеризуют итоговую величину признака по определенной совокупности объектов, охваченных статистическим наблюдением. Они являются суммой количества единиц изучаемой совокупности (численность совокупности) или суммой значений варьирующего признака всех единиц совокупности (объем варьирующего признака). Абсолютные величины выражаются в натуральных, стоимостных и трудовых единицах измерения. Натуральные единицы измерения в свою очередь могут быть простыми (тонны, штуки, метры, литры) и сложными, являющимися комбинацией нескольких разноименных величин (тонно-километры, киловатт-часы, человеко-часы и т.д.). Стоимостные единицы измерения используются для выражения объема разнородной продукции в стоимостной форме (рубли, доллары). В трудовых единицах измерения учитываются затраты труда, трудоемкость.
20. Относительные статистические величины, их виды
Относительная величина характеризуется обобщением явления не прямо и не посредственно, а через сравнение количественных признаков этих явлений. Они выступают как производные от абсолютных величин и как отвлечённые числа. По своему содержанию относительные величины подразделяются на виды: 1. относительная величина планового задания(ОВПЗ) 2. относительная величина выполнения плана(ОВВП) 3. относительная величина динамики(ОВД) 4. относительные величины структуры(ОВСстр) 5. относительными величинами интенсивности(ОВИ) 6. относительными величинами координации(ОВК) 7. относительными величинами сравнения(ОВСр)
21. Расчёты относительных величин планового здания, выполнение плана, структуры
Относительная величина планового задания ( ОВПЗ ) рассчитывается как отношение уровня, запланированного на предстоящий период, к уровню, фактически сложившемуся в этом периоде .и умножаем на 100%. Относительная величина выполнения плана ( ОВВП) представляет собой отношение фактически достигнутого в данном периоде уровня к запланированному. Относительные величины динамики, планового задания и выполнения плана связаны соотношением:
. Относительные величины структуры (ОВСтр)характеризуют состав изучаемых совокупностей; рассчитываются как отношение абсолютной величины каждого из элементов совокупности к абсолютной величине всей совокупности (части к целому) и представляют собой удельный вес части в целом в %.ОВСтр= часть совок./объём (итог)*100%
22. Расчёты относительных величин: динамики, координат, интенсивности, сравнения
Относительная величина динамики (ОВД) рассчитывается как отношение уровня признака в определенный период или момент времени к уровню этого же признака в предшествующий период или момент времени, т.е. она характеризует изменение уровня какого-либо явления во времени. Выражается в %. относительными величинами интенсивности(ОВИ) называют показатели, характеризующие степень распространения или уровень развития того или иного явления в определенной среде. относительными величинами координации(ОВК) называют показатели, характеризующие соотношение отдельных частей целого между собой. относительными величинами сравнения(ОВСр) называют показатели, представляющие собой частные от деления одноименных абсолютных величин, характеризующих разные объекты, относящихся к одному и тому же периоду времени.
23. Сущность и значение средних величин
Средняя величина - это обобщённая характеристика изучаемого признака в исследуемой совокупности. Она отражает типичный уровень признака в расчёте на единицу совокупности, в конкретных условиях места и времени. Существуют 2 категории СР величин: 1) степенные ср величины(арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т.д) 2) Структурные ср величины(мода и медиана)
24. Средняя арифметическая простая и взвешенная. Область применения
Ср. арифметическая: наиболее распространенный вид средних. Она равна простой сумме отдельных значений признака, делённая на общее число этих значений. Применяется в тех случаях , когда имеются не сгруппированные индивидуальные значения признака.
– средняя арифметическая простая. Когда средняя из вариантов которая повторяется различ. Число или имеют различный вес для расчёта ср.велич. применяется формула взвешанной
25. Средняя гармоническая простая и взвешенная. Область применения
Ср. гармоническая: когда статистическая информация не содержит частот f по отдельным вариантам х совокупности, а представлена как их произведение
, применяется формула ср. гармонической взвешенной, что бы исчислить ср обозначим х*f=m откуда определим f=m/х получим формулу:
. В тех случаях, когда вес каждого варианта равен единице (индивидуальные значения обратного признака встречаются по одному разу), применяется ср. гармоническая простая.
26. Основные свойства средней арифметической
Средняя арифметическая – самый распространенный вид средней величины. Она исчисляется в тех случаях, когда объем усредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности. При исчислении средней арифметической выполняют две операции: • суммируют индивидуальные значения признаков • полученную сумму делят на число значений
В зависимости от характера исходных данных средняя арифметическая может быть рассчитана по формуле простой или взвешенной средней.
Если исходные данные не систематизированы, то применяется формула простой средней арифметической.
Если исходные данные сгруппированы и представлены весами (частотами), т.е. с числом единиц, имеющих одинаковые значения признака, то среднюю арифметическую исчисляют по формуле взвешенной средней. Обычно средняя арифметическая исчисляется по формуле взвешенной средней. Простую среднюю используют только в тех случаях, когда у каждой варианты частота равна единице или если частоты у всех вариант равны друг другу. свойства средней арифметической:
1. Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты. Другими словами, постоянный множитель может быть вынесен за знак средней
2. Если от каждой варианты отнять (прибавить) какое-либо произвольное число, то новая средняя уменьшится (увеличится) на то же число: 3. Если каждую варианту умножить (разделить) на какое-то произвольное число, то средняя арифметическая увеличится (уменьшится) во столько раз 4. Если все частоты (веса) разделить или умножить на какое-либо число, то средняя арифметическая от этого не изменится. 5. Сумма отклонений отдельных вариантов от средней арифметической всегда равняется нулю
27. Средняя геометрическая и средняя хронологическая
Ср. геометрическая: применяется, когда характеризуют средний коэффициент роста. Она исчисляется извлечением корня степени п из произведения отдельных значений. Широко применяется для определения средних темпов изменения в рядах динамики, а также в рядах распределения. Считается по формуле:
. Средняя хронологическая: Когда признак хар. На определённую дату применяется формула средней хронологической:
28. Мода и медиана: понятия и порядок их нахождения в рядах распределения
Мода Мо – значение случайной величины, встречающееся с наибольшей вероятностью в дискретном вариационном ряду – вариант, имеющий наибольшую частоту. Модальный интервал определяется по наибольшей частоте. Медиана Ме – это вариант, который находится в середине вариационного ряда. Медиана делит ряд на две равные части – меньше медианы и больше медианы. № медианы находится по формуле: №Ме=∑F/2 – для чётного, для нечётного - №Mе=n+1/2
29. Показатели вариации
Вариация – различия в значениях того или иного признака у отдельных единиц, входящих в данную совокупность.
Размах вариации:
R=Хmaxs-Xmin
Среднее абсолютное отношение:
Дисперсия:
.
30. Ряды динамики и их виды
Ряд динамики (динамический ряд) представляет собой ряд из числовых данных. В каждом ряду динамики имеются два основных элемента: время t и конкретное значение показателя (уровень ряда) у. Уровни ряда – это показатели, числовые значения которых составляют динамический ряд. Время t – это моменты или периоды, к которым относятся уровни. . Построение и анализ рядов динамики позволяют выявить и измерить закономерности развития общественных явлений во времени. По времени, отраженному в динамических рядах, они разделяются на моментные и интервальные. Моментным рядом динамики называется такой ряд, уровни которого характеризуют состояние явления на определенные даты (моменты времени).
Интервальным (периодическим) рядом динамики называется такой ряд, уровни которого характеризуют размер явлений за конкретный период времени (год, квартал, месяц).
31. Показатели интенсивности в рядах динамики
К показателям интенсивности рядов динамики относят следующие показатели: 1)Абсолютный прирост, 2) Темп роста 3)Темп прироста 4)Абсол. знач. 1% прироста. Показатели интенсивности можно рассчитать базисным и цепным методом. Абсолютный прирост – разница между последующим уровнем и предыдущим (ЦМ) цепной метод – это разница между последующим уровнем и уровнем принятым за базу(БМ) Темп роста- это отношение последующего уровня и уровня дин. к предыдущему. Темп прироста – это разность между темпом роста и 100% или разностью между темпом роста и единицей. Абсолютное значение 1% рассчитывается как отношение абсол. прироста к темпу прироста
32. Средние показатели в рядах динамики
Для получения обобщающих показателей динамики социально экономических явлений определяются средние величины : средний уровень , средний абсолютный прирост , средний темп роста и прироста и пр. Средний уровень ряда динамики характеризует типическую величину абсолютных уровней . В интервальных рядах динамики средний уровень у определяется делением суммы уровней на их число n. Средний абсолютный прирост представляет собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики . Для определения среднего абсолютного прироста сумма цепных абсолютных приростов делится на их число n . Средний абсолютный прирост может определяться по абсолютным уровням ряда динамики . Для этого определяется разность между конечным и базисным уровнями изучаемого периода , которая делится на m – 1 субпериодов.
33. Методы анализа основной тенденции развития в рядах динамики: укрупнение интервалов
Одним из наиболее элементарных способов изучения общей тенденции в ряду динамики является укрупнение интервалов. Этот способ основан на укрупнении периодов, к которым относятся уровни ряда динамики. Например, преобразование месячных периодов в квартальные, квартальных в годовые и т.д
34. Методы анализа основной тенденции развития в рядах динамики: метод скользящей средней
Выявление общей тенденции ряда динамики можно произвести путем сглаживания ряда динамики с помощью скользящей средней. Скользящая средняя - подвижная динамическая средняя, которая рассчитывается по ряду при последовательном передвижении на один интервал, то есть сначала вычисляют средний уровень из определенного числа первых по порядку уровней ряда, затем - средний уровень из такого же числа членов, начиная со второго. Таким образом, средняя как бы скользит по ряду динамики от его начала к концу, каждый раз отбрасывая один уровень в начале и добавляя один следующий. Скользящая средняя обладает достаточной гибкостью, но недостатком метода является укорачивание сглаженного ряда по сравнению с фактическим, что ведет к потери информации. Кроме того, скользящая средняя не дает аналитического выражения тренда. Период скользящей может быть четным и нечетным. Практически удобнее использовать нечетный период, так как в этом случае скользящая средняя будет отнесена к середине периода скольжения. Скользящие средние с продолжительностью периода, равной 3 Недостатком способа сглаживания рядов динамики является то, что полученные средние не дает теоретических рядов, в основе которых лежала бы математически выраженная закономерность.















