168881 (631826), страница 2
Текст из файла (страница 2)
С позиций ограничений техногенеза указанный критерий обеспечивается при следующих условиях: • минимизации срока строительства промышленных объектов; это условие обеспечивает минимальные экономические потери, вызванные нестационарной составляющей строительного техногенеза. Важное требование, предъявляемое к формированию и функционированию замкнутых промышленных экосистем, состоит в том, чтобы закономерная тенденция возрастания энтропии системы была строго регламентирована жестким диапазоном количественных норм на все параметры промышленного техногенеза. Экологически безопасное функционирование ПТГ обеспечивается путем своевременной предупредительной защиты объектов природы от тотального отрицательного воздействия на них со стороны объектов строительного и промышленного техногенеза. Наряду с возможным глобальным экологическим скачком современный техногенез обусловливает закономерный процесс развития негативных антропогенных изменений по всей номенклатуре объектов гео- и биосферы Экологические эквиваленты промышленного техногенеза:1. каждый вид промышленного техногенеза обладает свойственной ему спецификой воздействия на объекты природы, заключающейся в определенном распределении антропогенных изменений по качественному и количественному составу (состав атмосферного воздуха, наличие в воде примесей определенного вида и количества, характер и масштабы нарушения целостности). Вторым этапом исследования состояния ПТГ по видам промышленного техногенеза является количественная оценка суммарных потерь по всем объектам окружающей природной среды. Необходимой основой для разработки специальных шкал по видам промышленного техногенеза: строительство промышленных объектов с разнохарактерной спецификой взаимодействия с окружающей средой (подземные, надземные, подводные, надводные, комбинированные, стационарные и нестационарные.
Примерами специальных шкал по видам промышленного техногенеза могут быть: экологический ущерб (в локальном, региональном и планетарном выражении); степень экологической защиты в заданных границах; мера экологического риска (степень опасности по различным экологическим последствиям) и др. Поэтому исследование физических величин и их метрологических свойств в рамках номенклатурного состава промышленного техногенеза составляет важную самостоятельную задачу, решение которой позволит определить:• диапазоны изменчивости размеров физических величин, составляющих конкретную техногенную структуру;• количественную сопоставимость физических величин по искусственным объектам и природным аналогам;• возможность измерений физических величин имеющимися способами и средствами;• коррелируемость разнохарактерных величин и возможность их комплексного представления и др.
6. Загрязнение окружающей среды в РФ
Все неиспользованное сырье, а это его основная часть (до 90%) поступает в окружающую среду в виде различных отходов. Следует отметить, что эти вещества в природе прежде всего были в наименее растворимой и, следовательно, наименее токсичной форме. Например, металлы - в виде малорастворимых оксидов или сульфидов, фтор - в виде фторида кальция или фосфатов (последние всегда содержат фтор). И даже несмотря на это месторождения фторида кальция или фосфоритов являются зонами эндемического (природного) флюороза. При получении металлов, фосфорных удобрений и ряда других продуктов образуется большое количество твердых, жидких и газообразных отходов, в которых так называемые тяжелые металлы и фтор находятся в активной форме, губительно воздействующей на все живое. За последние пятнадцать лет промышленность и транспорт выбросили в окружающую среду свинца больше, чем за весь предшествующий период. Всего в результате промышленной деятельности от всех антропогенных источников в биосферу поступило около 20 млн. т свинца, 14 млн. т цинка, более 2 млн. т меди и т.д. Масштабы выбросов соединений кадмия, цинка, меди и других тяжелых металлов всеми вулканами нашей планеты далеко уступают их количеству, поступающему только от мусоросжигательных печей. При этом следует отметить, что антропогенные источники выделения тяжелых металлов распределены очень неравномерно и сконцентрированы преимущественно в густонаселённых промышленных регионах. Особую опасность вызывает непрерывное повышение регионального и глобального фона - средней концентрации (например, тяжёлых металлов в почве, воде и воздухе), сложившейся в регионе. Повышенное внимание к тяжелым металлам уделяется потому, что по общетоксическому воздействию на живые организмы они уже вышли на первое место, далеко опередив радиоактивные вещества и пестициды, и вызывают целый букет тягчайших человеческих недугов: сердечно-сосудистые заболевания, умственную неполноценность, паралич, рак, наследственные болезни. В последнее десятилетие особую тревогу вызывает ежегодное поступление в атмосферу от антропогенных источников до 25 млрд. т диоксида углерода (около 10% от общего природного поступления), вызывающего потепление за счет парникового эффекта, около 190 млн. т монооксида углерода - угарного газа (10%), около 110 млн. т диоксида серы - одного из основных источников кислых дождей (75-90% в зависимости от полушария), около 70 млн. т оксидов азота, свыше 50 млн. т различных углеводородов, около 50 млн. т первичных аэрозолей (4%). Кроме того, образуется еще порядка 250 млн. т мелкодисперсных аэрозолей сульфатов, нитратов, углеводородов (20%) и т.д. Доля ОСЙР в общем объеме выбросов составляла около 10%. В 1988 г. в нашей стране в окружающую среду поступило 12-15 млрд. т твердых отходов, 160 млрд. т жидких и 107 млн. т газообразных выбросов, аэрозолей и пыли. В Государственном докладе «О состоянии окружающей природной среды Российской Федерации в 1996 году» сказано, что загрязнения атмосферного воздуха в 262 городах и промышленных центрах России свидетельствуют о том, что за пятилетний период (1992-1996 гг.) средние за год концентрации пыли, диоксида серы и формальдегида снизились на 11-13%, бензопирена - на 39%. За тот же период средние концентрации сероводорода, оксида углерода, оксида и диоксида азота возросли на 3-8%. ... За год концентрации загрязняющих веществ превышали установленные санитарно-гигиенические нормативы в воздухе 205 городов с населением 65,4 млн. чел. (44% населения страны). Случаи превышения максимальных концентраций 10 ПДК имели место в 70 городах.» Таково состояние атмосферы в нашей стране в настоящее время.
7. Какова динамика роста промыш. производства, потребления сырья и энергии и кол-ва отходов?
Анализ развития производств и динамики потребления сырья и образования отходов привели выводу о том, что дальнейшее развитие производств не может осуществляться на базе сложившихся традиционных экстенсивных технологических процессов без учёта экологических ограничений и требует принципиально нового подхода. Этот подход, получивший название «безотходная технология», а позднее «чистая технология», основой которого является цикличность материальных потоков, подсказан самой природой. Академик И. В. Петрянов-Соколов провел кропотливое и тщательное исследование развития промышленности и объемов использования природных ресурсов. Как показал анализ этого огромного статистического материала (с 1909 г.), объем мирового промышленного производства увеличивается по экспоненциальному закону. Количество перерабатываемого сырья и образующихся при этом отходов также возрастает экспоненциально. А это означает, что человечество все больше и больше работает на производство отходов. На тот период только около 1-2% сырьевых материалов переходило в конечную продукцию, а остальные 98-99% превращались в отходы, зачастую весьма токсичные. Никогда раньше человек не добывал из Земли так много сырья, как в наше время. Подсчитано, что на каждого жителя развитых стран уже приходится не менее 20 т/год добываемого минерального сырья. Еще более примечательно то, что расходы на обезвреживание и переработку отходов уже теперь, когда деятельность людей в этом направлении практически только начинается, также возрастают экспоненциально и уже сейчас составляют 8-10% стоимости производимой продукции. С некоторым приближением можно принять, что все три процесса могут быть описаны уравнением
А = Вni
где А - объем производства или используемого сырья, количество образующихся отходов либо затраты на их обезвреживание и переработку, В - постоянная величина, ni = 1,2,3 - показатели трех упомянутых экспонент, причем n3>n2>n1.
Идея многократного, цикличного, экономного использовать материальных ресурсов уже не только широко обсуждается во всем мире, но в большинстве стран нашла широкое практическое применение. Так, в развитых капиталистических странах степень повторного использования свинца составляет не менее 65%, железа - 60, меди - более 40, никеля - 40, алюминия - 33, цинка - 32% и т.д. В нашей стране эти цифры значительно скромнее. За счет использования вторичного сырья производится 30% стали и 20% цветных металлов. Необходимо также отметить, что энергоемкость производства алюминия из вторичного сырья в 20 раз, а стали в 10 раз ниже, чем энергоемкость их производства из первичного сырья. Можно подсчитать, что если запасы возрастут в 10 раз, то обеспеченность сырьем производства увеличится всего в 2,5-3 раза. В случае рециркуляции 50% металлов из сферы потребления в сферу производства обеспеченность важнейшими металлами возрастает в 3-3,5 раза, а при 95-98%-ной степени рециркуляции - в 5-7 раз. В конечном итоге основным для промышленного производства должно стать вторичное сырьё. Такая тенденция уже существует. Так, в нашей стране 25-30 лет назад в готовую продукцию переходило всего 1-2% используемых сырьевых материалов, 15-20 лет назад - от 5 до 10%.
8. Место техногенного кругооборота веществ в биогеохимическом кругообороте
Управление рациональным природопользованием в рамках отраслевой структуры, влияющей на окружающую среду, начинается с оценки прямых и косвенных затрат ОС. Это выражено при наличии экологического контроля и мониторингов ПТГ, возможности проведения ЭЭЭ проектов, паспортизации производственных и соответствующих проектов обезвреживания и утилизации отходов при достижении эффективности природоохранных и ресурсосберегающих технологий. С этой целью мы остановимся на ряде проблем, необходимых к срочному разрешению. В природных экосистемах производство и разложение сбалансированы, в них нет отходов: отходы одних организмов служат средой обитания для других и таким образом осуществляется практически замкнутый кругооборот веществ в природе. В природных экосистемах около 90% энергии расходуется на разложение и возвращение веществ в биогеохимический кругооборот. В социально-экономических системах около 90% материальных ресурсов переходит в отходы, а основное количество энергии используется в производстве и потреблении. Поэтому главной задачей промышленной экологии является нахождение путей для рационального использования природных ресурсов, предотвращения их исчерпания, деградации и загрязнения окружающей среды, а в конечном итоге - совмещение техногенного и биогеохимического кругооборотов веществ.
9. Как изменяется энтропия при сжигании угля и при фотосинтезе?
При наличии вращения устанавливается стационарное состояние, далекое от равновесия с солнечным излучением. Температура в этом состоянии в течение суток совершает небольшие колебания вокруг значения, меньшего единицы. Таким образом, вращение обеспечивает прерывание процесса нагрева и дополнительное охлаждение планеты, что и приводит к уходу неизолированной системы от равновесного состояния с излучением.
Соответственно энтропия планеты без биосферы при отсутствии вращения стремится к максимуму, соответствующему термодинамическому равновесию с излучением. При наличии же вращения энтропия стремится к меньшему стационарному значению.
При наличии вращения энтропия планеты с биосферой возрастает только в первые моменты времени, пока температура возрастает. Как только температура выходит на постоянный уровень, энтропия, совершая суточные колебания, уменьшается линейно со временем. Это происходит благодаря реакции фотосинтеза, осуществляемой биосферой.
Изменение энтропии измеряется в единицах максимально возможного ее изменения при отсутствии вращения и реакции фотосинтеза, время – в десятках суток.
Линейный закон уменьшения энтропии в данной модели обязан лишь сделанному допущению о линейности роста массы глюкозы. Если рост массы биосферы прекращается из-за конечности ресурсов планеты, то энтропия биосферы также выйдет на стационарный уровень. Вывод о возможности уменьшения энтропии в неизолированной системе с потоками тепла через границу под действием двух регулярных факторов : вращения и реакции фотосинтеза, - сделан в следующих упрощающих предположениях : независимость теплоемкости от температуры, постоянство давления; равенство температур реагирующих компонент; заданная постоянная скорость химической реакции вместо учета химической кинетики; применение уравнения состояния идеального газа к воде и глюкозе. Учет отличия уравнения состояния для воды и глюкозы от уравнения состояния идеального газа лишь улучшит ситуацию, т.к. энтропия жидкостей меньше энтропии газов. Детальным учетом кинетики реакции фотосинтеза можно пренебречь, т.к. нас интересует только изменение энтропии системы, а ни одно из вспомогательных веществ не расходуется и не вносит вклад в это изменение. Модель работает, когда ресурсы системы можно считать неограниченными, т.е. на начальной стадии процесса формирования биосферы.
10. В чем суть концепции безотходных или чистых производств?
Безотходная технология - это такой способ производства продукции (процесс, предприятие, территориально-производственный комплекс), при котором наиболее рационально и комплексно используются сырье и энергия в цикле сырьевые ресурсы - производство - потребление - вторичные сырьевые ресурсы таким образом, что любые воздействия на окружающую среду не нарушают ее нормального функционирования». Под малоотходным понимается такой способ производства продукции (процесс, предприятие, территориально-производственный комплекс), при котором вредное воздействие на окружающую среду не превышает уровня, допустимого санитарно-гигиеническими нормами; при этом по техническим, организационным, экономическим или другим причинам часть сырья и материалов переходит в отходы и направляется на длительное хранение или захоронение. Термин чистое производство был введен на заседании рабочей группы ЮНЕП/ИЕО в 1989 г. Было дано следующее определение чистого производства: «это производство, которое характеризуется непрерывным и полным применением к процессам и продуктам природоохранной стратегии, предотвращающей загрязнение окружающей среды таким образом, чтобы понизить риск для человечества и окружающей среды.
Основные принципы организации малоотходных и безотходных или чистых производств:
-разработка принципиально новых процессов, при внедрении которых существенно снижается или практически исключается образование отходов и отрицательное воздействие на окружающую среду;
- комплексное использование всех компонентов сырья и максимально возможное использование потенциала энергоресурсов. Комплексный подход, имеющий не только экологическое, но и важное экономическое значение, обеспечивает эффективность таких производств, что в значительной степени ускоряет их разработку и внедрение. В качестве примера можно привести комплексную переработку полиметаллических руд, апатитового и нефелинового концентратов, руд, содержащих редкие металлы.
- внедрение геотехнологических методов разработки месторождений полезных ископаемых (например, подземное выщелачивание);
- применение безводных методов обогащения и переработки сырья на месте его добычи;
- использование гидрометаллургических методов переработки руд и отходов;