150522 (631531), страница 2

Файл №631531 150522 (Основы гидрогазодинамики) 2 страница150522 (631531) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

угловая деформация линейного отрезка в направлении оси у.

скорость угловой деформации или скорость скашивания в направлении оси у. Если отрезок расположить на оси у, то - скорость скашивания в направлении оси х. - средняя скорость угловой деформации в плоскости ху.

Таким образом недиагональные компоненты характеризуют скорости скашивания или угловых деформаций в соответствующих плоскостях.

7. Уравнение сплошности

Уравнение сплошности – это уравнение закона сохранения массы:

Выделим в жидкости элементарный объем с плотностью ρ.

Следовательно:

Второй член полученного уравнения выражает закон относительного изменения объема,. Т.е. дивергенцию.

Плотность в общем случае зависит от координат и времени:

Поэтому:

уравнение сплошности (неразрывности).

Если течение стационарное, то уравнение упрощается:

Если жидкость несжимаемая, т.е. , то

8. Нормальное и касательное напряжение, действующие в движущейся жидкости

Закон сохранения количества движения для неизолированной системы может быть записан в виде:

где - главный вектор количества движения системы

- главный вектор внешних сил, действующих на систему

В жидкости выделим элементарный тетраэдр с гранями , , , . Индекс показывает перпендикулярно какой оси расположены грани, - наклонная грань. К граням приложены соответствующие напряжения , , , (не перпендикулярные граням). Масса тетраэдра . На тетраэдр действуют массовые и поверхностные силы. Массовые характеризуются вектором плотности , поверхностные – напряжениями.


- скорость центра инерции тетраэдра

- третий порядок малости

- второй порядок малости

Членами третьего порядка малости пренебрегаем.

и т.д.

пх

Получим связь напряжений, действующих на грани выделенного тетраэдра:

В проекциях на координатные оси это уравнение может быть переписано:

В записанной системе называются нормальными напряжениями, а и т.д. называются касательными напряжениями. Все напряжения могут быть записаны в матричной форме в виде симметричного тензора напряжений:

Первый индекс определяет ось, относительно которой расположена грань, второй – ось на которую проецируется напряжение.

9. Уравнение движения сплошной среды в напряжениях

Рассмотрим элементарный параллелепипед с ребрами . Объем его . На него действуют массовые и поверхностные силы определяемые главным вектором внешних сил . К параллелепипеду применим закон сохранения количества движения:


Для определения главного вектора поверхностных сил рассмотрим все силы, дающие проекцию на ось х. Для граней перпендикулярных х проекцию дают только силы, создаваемые нормальными напряжениями. Поэтому равнодействующая этих сил равна:

Аналогично для граней перпендикулярных z получим равнодействующую равную:

Равнодействующая поверхностных сил в проекции на ось х равна:

Тогда закон сохранения количества движения в проекции на х можно записать:

Полученная система называется системой уравнений движения сплошной среды в напряжениях. В левой части стоит полная производная от скоростей, которые могут быть расписаны через локальные и конвективные составляющие ускорения. При определенных условиях левая часть значительно упрощается (стационарное, двухмерное или одномерное течение).

Т .к.

систему можно записать в виде одного уравнения в векторной форме записи:

10. Напряжения, действующие в идеальной жидкости

В идеальной жидкости отсутствуют силы трения, следовательно касательные напряжения равны нулю. Применительно к элементарному тетраэдру проекция напряжения, приложенного к произвольной наклонной грани на ось х равна:

С другой стороны:

Аналогично для проекций на у:

и

Таким образом в идеальной жидкости величина нормального напряжения в любой точке не зависит от направления площадки к которой напряжение приложено. В идеальной жидкости величина нормального напряжения в точке называется гидродинамическим давлением в этой точке. Модель идеальной жидкости упростила постановку и решение многих задач, в которых влиянием сил трения можно пренебречь.

Знак «минус» ставится, т.к. жидкость оказывает давление на выделенный объем в направлении противоположном внешней нормали.

11. Уравнение движения идеальной жидкости (Эйлера)

Для вывода воспользуемся уравнениями движения в напряжениях:

- система уравнения Эйлера для идеальной жидкости.

Справедлива, как для сжимаемой, так и для несжимаемой жидкости. Если жидкость сжимаемая, то необходимо ввести функцию координаты от времени:

Если жидкость несжимаемая, то

12. Уравнение движения идеальной жидкости (Эйлера) в форме Громека

Все преобразования выполним на первом уравнении:

Отсюда:

- система уравнений движения для и.ж. в форме Громека

Рассмотрим далее движение, предполагая, что массовая сила имеет потенциал и течение баротропное.

Первое предположение утверждает, что у массовых сил имеется потенциал, связанный соотношениями с массовыми силами:

; ; ,

U - потенциал массовых сил.

Второе: баротропным считается течение, у которого ρ считается только функцией давления.

Например, баротропными течением является:

  1. ρ=const – газ или жидкость несжимаемы

  2. движение среды изотермическое -

  3. движение среды адиабатное -

Условие баротропности предполагает, что существует некоторая функция Р, зависящая от давления, которая определяется выражением:

Функция Р связана с р и ρ соотношениями:

; ; .

Подставим в систему уравнений Громека потенциал массовых сил и функцию Р:

- система уравнений Эйлера в форме Громека

Достоинство системы заключается в том, что отдельно выделен ротор, который при определенных условиях может быть равен нулю и система значительно упрощается. Последний член равен нулю, если: 1) - статическая задача; 2) - течение безвихревое или потенциальное.

Сумма, стоящая во второй компоненте, имеет определенный физический смысл. В векторной форме система может быть записана в виде одного уравнения:

13. Теорема Бернулли

Рассмотрим стационарное баротропное течение под действием массовых сил, т.е. можно записать:

умножим уравнение скалярно на вектор скорости, тогда последний член равен нулю, т.к. идет скалярное перемножение перпендикулярных векторов.

- единичный вектор в направлении вектора скорости. Вектор скорости направлен по касательной к линии тока или к траектории, т.к. течение стационарное, следовательно:

- производная по направлению.

выражение отражает теорему Бернулли: при стационарном баротропном течении идеальной жидкости под действием потенциальных массовых сил сумма кинетической энергии единицы объема, функции давления приведенного к единице массы потенциала массовых сил сохраняет постоянное значение вдоль любой линии тока.

Если бы скалярно умножили исходное уравнение на вектор угловой скорости, то получили бы аналогичный результат вдоль вихревой линии.

Если течение потенциальное, то и сразу же получается:

и

во всем потоке, т.е. трехчлен Бернулли сохраняет постоянное значение во всей области потенциального потока.

Рассмотрим потенциальное течение несжимаемой жидкости под действием сил тяжести. Т.к. жидкость несжимаема то :

У сил тяжести потенциал равен: , zкоордината.

(1), - удельный вес

Все эти составляющие имеют размерность давления и называются напорами: - скоростной или динамический напор; р – пьезометрический напор; - геометрический напор; ро – полный напор

При стационарном течении идеальной несжимаемой жидкости полный напор, равный сумме , сохраняет постоянное значение вдоль любой линии тока, а при потенциальном течении во всей области потока.

В задачах, в которых можно пренебречь влиянием геометрического напора, уравнение Бернулли упрощается и приобретает вид:

Уравнение (1) разделим на , тогда:

все компоненты измеряются в метрах и называются высотами: - скоростная высота, - пьезометрическая высота, zнивелирная высота, Н – гидравлическая высота. При стационарном движении идеальной несжимаемой жидкости высота

сохраняет постоянное значение вдоль любой линии тока (или вихревой линии), а при потенциальном течении во всем токе.

14. Основные понятия и определения потенциальных течений

Потенциальные течения – это течения, у которых во всем потоке, следовательно существует функция φ, называемая потенциалом, зависит φ(х,у,z,t) и связана с составляющими U соотношениями:

Характеристики

Тип файла
Документ
Размер
6,15 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6547
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее