144644 (631522), страница 4

Файл №631522 144644 (Сопротивление материалов) 4 страница144644 (631522) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

, , .

  1. Что понимается под главными осями инерции сечения и как определяется их положение ?

Взаимно перпендикулярные оси, из которых одна или обе совпадают с осями симметрии сечения, всегда являются главными осями инерции.

Оси, относительно которых осевые моменты инерции имеют экстремальные значения, называются главными осями инерции.

.

Относительно главных осей инерции центробежный момент инерции равен нулю.

Положение главных осей инерции определяется углом :

.

  1. Что понимается под радиусами инерции сечения ?

Радиусом инерции сечения относительно некоторой оси, например , называется величина , определяемая из равенства

, откуда .

Радиусы инерции, соответствующие главным осям, называются главными радиусами инерции.

, .

  1. Сформулировать основные виды напряженного состояния конструкции.

Совокупность нормальных и касательных напряжений, действующих по всем площадкам, проходящим через рассматриваемую точку, называется напряженным состоянием в этой точке.

При объемном (трехосном) напряженном состоянии (рис а) нет площадок, в которых нормальные и касательные напряжения были бы равны.

При плоском (двухосном) напряженном состоянии (рис б) в одной из площадок касательные и нормальные напряжения равны нулю.

При линейном (одноосном) напряженном состоянии (рис в) касательные и нормальные напряжения равны нулю в двух площадках, проходящих через рассматриваемую точку.

  1. Назвать основные теории прочности, по которым оценивается напряженное состояние материала.

Теории прочности представляют собой гипотезы о критериях, определяющих условия перехода материала в опасное состояние.

Первая теория прочности представляет собой гипотезу о том, что опасное состояние материала наступает, когда наибольшее растягивающее напряжение достигает опасного значения.

Вторая теория прочности представляет собой гипотезу, согласно которой опасное состояние материала наступает в результате того, что наибольшее относительное удлинение достигает опасного значения.

Третья теория прочности представляет собой гипотезу, согласно которой опасное состояние материала наступает, когда наибольшие касательные напряжения в нем достигают опасного значения.

Четвертая (энергетическая) теория прочности представляет собой гипотезу о том, что причиной возникновения опасного состояния является величина удельной потенциальной энергии изменения формы.

Теория прочности Мора – можно считать, что прочность материала определяется лишь наибольшим и наименьшим главными напряжениями.

Расчет трехосного состояния сводится к расчету прочности при двухосном напряженном состоянии построением кругов Мора.

Единая теория прочности объясняет разрушение материала как в результате отрыва, так и сдвига, и может использоваться при любом виде напряженного состояния.

  1. Что понимается под сложным сопротивлением ?

К сложному сопротивлению относятся виды деформаций бруса, при которых в его поперечных сечениях одновременно возникают не менее двух внутренних силовых факторов.

Рассматриваются следующие виды сложного сопротивления: косой изгиб, внецентренное растяжение и сжатие, изгиб с кручением, сжатие с кручением, сжатие (растяжение) с изгибом и кручением.

Сложное сопротивление может быть получено путем суммирования напряженных состояний, вызванных каждым отдельным видом простого нагружения.

  1. Как определяются напряжения при внецентренном растяжении (сжатии) ?

Если на жесткий брус в его верхнем поперечном сечении одновременно действуют продольная сила и изгибающие моменты и , то нормальное напряжение в произвольной точке равно сумме напряжений

.

Формулу можно использовать, если сила приложена не по центру, а, например, в точке со смещением и .

  1. Как определяются напряжения при косом изгибе ?

Косой изгиб можно рассматривать как сочетание двух прямых изгибов, вызванных изгибающими моментами относительно главных центральных осей инерции поперечного сечения.

Напряжение в любой точке определяется как .

  1. Как определяется приведенный (эквивалентный) момент по третьей и четвертой теориям прочности ?

По третьей теории прочности .

По четвертой теории прочности , где - изгибающий момент, - крутящий момент.

  1. По какой формуле можно определить предварительный диаметр вала, работающего на кручение ?

Валы обычного работают на кручение с изгибом. Предварительный диаметр вала с учетом только кручения определяют из условия прочности по заниженным допускаемым напряжениям

после этого разрабатывают схему нагружения вала и уточняют диаметр вала по приведенному моменту.

  1. Как определяются напряжения по третьей и четвертой теориям прочности при изгибе с кручением ?

По третьей теории прочности .

По четвертой теории прочности .

Соответственно условия прочности имеют вид:

, .

  1. Какова последовательность расчета вала, работающего на изгиб с кручением?

Сочетание изгиба и кручения брусьев круглого поперечного сечения наиболее часто рассматривается при расчете валов. Последовательность расчета может быть следующей:

  1. Выполняется расчетная схема вала.

  2. Определяются внешние нагрузки.

  3. Определяются опорные реакции в горизонтальной и вертикальной плоскостях.

  4. Строятся эпюры изгибающих моментов в горизонтальной и вертикальной плоскости.

  5. Строится эпюра суммарного изгибающего момента.

  6. Строится эпюра крутящих моментов.

  7. Определяется приведенный момент по одной из теорий прочности.

  8. Определяются действующие напряжения и сравниваются с допускаемыми.

  9. Определяется диаметр вала только по условию кручения и по условию кручения с изгибом и выбирается наибольший.

  1. Что понимается под устойчивым состоянием упругого тела ?

Из механики известно, что равновесие твердых тел может быть устойчивым и неустойчивым.

При устойчивом равновесии тело, выведенное какой-либо внешней силой из положения равновесия, возвращается в это положение после прекращения действия силы. Аналогичная картина наблюдается в статике упругих тел.

Устойчивость или неустойчивость формы равновесия упругого тела зависит от его размеров, материала, величин и направления сил.

  1. Что понимается под критическим состоянием равновесия упругого тела ?

Значение силы, нагрузки и напряжения, при которых первоначальная форма равновесия упругого тела становится неустойчивой, называется соответственно критической силой, критической нагрузкой и критическим напряжением.

Понятие устойчивости не следует смешивать с понятием прочности; каждое из них имеет самостоятельное значение. Потеря устойчивости не всегда связана с потерей прочности.

  1. Привести формулу критической силы для центрального сжатого прямого стержня.

Формула была впервые получена Эйлером и носит название эйлеровой критической силы

.

Если сжимающая сила меньше критической, то возможна только прямолинейная форма равновесия, которая в этом случае является устойчивой.

Приведенная формула дает значение критической силы для стержня с шарнирно закрепленными концами.

  1. Как влияет способ закрепления стержня на величину критической силы ?

Формулу Эйлера для определения критической силы при различных закреплениях концов стержня можно записать как .

Коэффициент позволяет любой случай закрепления концов стержня свести к основному случаю – к стержню с шарнирно закрепленными концами.

Для шарнирно закрепленных концов ;

Для стержня с закрепленными концами ;

Для стержня с одним закрепленным и другим свободным концом ;

Для стержня с одним заделанным и другим шарнирно закрепленным концом .

  1. По какой формуле вычисляется критическое напряжение ?

Критическое сжимающее напряжение, т.е. такое, при котором прямолинейная форма равновесия стержня становится неустойчивой, определится по формуле

.

Введем понятие гибкости стержня , получим , где - радиус инерции поперечного сечения стержня.

  1. Что понимается под гибкостью стержня ?

Безразмерная величина носит название гибкости стержня и характеризует его способность сопротивляться искривлению в зависимости от размеров и способа закрепления концов.

Предельная гибкость , при которой формула Эйлера еще применима. Например, для стали Ст3 , при нужно пользоваться формулой Ясинского.

  1. Определить область применимости формулы Эйлера при расчетах на устойчивость.

Приведенная формула Эйлера справедлива тогда, когда напряжение в материале, вызванное критической силой , не превышает предела пропорциональности, т.е. . Формулой Эйлера можно пользоваться лишь в пределах применимости закона Гука

.

Отсюда получим формулу для предельной гибкости .

Условие применимости формулы Эйлера можно представить в виде .

  1. Как определяются критические напряжения при гибкости стержня меньше предельной ?

Действительные критические силы и критические напряжения для стержней, гибкость которых ниже предельной, значительно меньше величин, определяемых по формуле Эйлера. Для таких стержней критические напряжения рекомендуется определять по эмпирическим формулам Ф.С. Ясинского:

для стали ;

для чугуна , где , и - определяемые экспериментально коэффициенты, зависящие от свойств материала.

Например, для Ст3 , , , ;

Для дерева (сосна) , , .

  1. Привести графическую зависимость между критическими напряжениями и гибкостью стержня из углеродистой стали Ст3.

Участок I соответствует простому сжатию коротких стержней, II – напряжению, определяемому по формуле Ясинского, III – напряжению, определяемому по формуле Эйлера, когда .

  1. Записать условие устойчивости стержня через допускаемое напряжение .

Допускаемое напряжение через допускаемое напряжение на прочность запишется так : , где - коэффициент уменьшения основного допускаемого напряжения для сжатых стержней, который зависит от материала стержня и его гибкости.

Тогда условие устойчивости выражается неравенством .

Кроме условия устойчивости сжатые стержни должны удовлетворять и условию прочности .

  1. Какие задачи можно решать при расчетах на устойчивость ?

В основном рассматриваются два вида расчетов:

Характеристики

Тип файла
Документ
Размер
4,83 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6312
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее