10802-1 (630634), страница 2

Файл №630634 10802-1 (Ответы на экзаменационные вопросы по теоретической механике) 2 страница10802-1 (630634) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

14.1)Классификация сил, действующих на механическую систему: силы внешние и внутренние, активные и реакции связей.

2)Физический маятник. Опытное определение моментов инерции тел.

1)Внешние силы- силы, действующие на материальную точку системы со стороны тел не входящих в состав данной механической системы.

Внутренние силы- силы, действующие между материальными точками данной механической системы.

Силы заданные по условию задачи принято называть- активными силами. А силы, обусловленные наличием связи- реакциями связи.

2) Физический маятник- твёрдое тело, совершающее колебания вокруг горизонтальной неподвижной оси под действием только силы тяжести. Ось вращения физического маятника называется- осью привеса. Обозначим φ угол между вертикальной осью, проходящей через ось привеса линией, проходящей перпендикулярно оси привеса через центр тяжести точку С. G- вес тела. Дифференциальное уравнение физического маятника знак «-» в правой части поставлен потому, что при повороте маятника в положительном направлении (т.е. против часовой стрелки) сила тяжести хочет повернуть маятник в обратном направлении. - это уравнение называется дифференциальным уравнением колебаний физического маятника.

15.1)Моменты инерции системы и твёрдого тела относительно оси, полюса и плоскости. Радиус инерции.

2)Законы Кеплера. Закон всемирного тяготения.

1)Моментом инерции твердого тела относительно оси называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до оси.

Моментом инерции твёрдого тела относительно плоскости называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояний от этой точки до плоскости.

Моментом инерции твёрдого тела относительно полюса (полярным моментом инерции) называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояния от точки до этого полюса. Радиусом инерции тела относительно данной оси z называется линейная величина , определяемая равенством , где М- масса системы.

2)Законы Кеплера: 1. Все планеты солнечной системы движутся по эллипсу, в одном из фокусов находится Солнце. 2. Секторные скорости радиусов векторов планет, относительно Солнца не зависят от времени. 3. Квадраты периодов обращения планет относятся как кубы больших полуосей.

Закон всемирного тяготения

16. 1)Осевые моменты инерции однородного стержня, цилиндра, шара.

2)Теорема об изменении момента количества движения точки.

1)Момент инерции однородного тонкого стержня Момент инерции однородного круглого цилиндра Полого цилиндра Момент однородного шара

- это соотношение выражает теорему об изменении момента количества 2)движения материальной точки относительно центра: производная по времени от момента количества движения материальной точки относительно некоторого неподвижного центра равна геометрической сумме моментов сил, действующих на точку, относительно того же центра.

17.1)Теорема о моментах инерции относительно параллельных осей.

Момент инерции твёрдого тела относительно некоторой оси равен моменту инерции тела относительно параллельной оси, проходящей через его центр масс, сложенному с произведением массы тела на квадрат расстояния между осями. Допустим, что задана ось . Для доказательства теоремы проведём 3 взаимно перпендикулярные оси, из которых ось параллельна заданной оси , а ось лежит в плоскости параллельных осей и . Для вычисления моментов инерции тела относительно осей и опустим из каждой точки рассматриваемого тела перпендикуляры и на оси и . Выразим длины этих перпендикуляров через координаты этих точек: , (зависимость а). Определим моменты инерции тела относительно осей и : , . Применим зависимость а) (зависимость б), из этой формулы получим т.к. =0 , то . Подставляя это значение в равенство б), получаем зависимость, установленную теоремой:

1 8.1)Центробежные моменты инерции. Эллипсоид инерции. Главные оси и главные моменты инерции.

2) Дифференциальные уравнения поступательного движения и вращения тела вокруг неподвижной оси.

1)Момент инерции твёрдого тела относительно оси v определяется по формуле

Рассмотрим изменение момента инерции , происходящее при изменении направления оси v т.е при изменении углов α, β, γ. Для наглядного изображения этого изменения отложим по оси v от точки О отрезок ON, длина которого Выразим направляющие косинусы оси v через координаты x, y, z точки N и длину отрезка ON: ; ; . Подставим cosα, cosβ, cosγ в выражение , подставили разделили на получили . Это уравнение определяет поверхность, по которой перемещается точка N, при изменении направления оси v при условии (ф-ла 123). Это уравнение представляет собой уравнение поверхности второго порядка. Эта поверхность является эллипсоидом, т.к. расстояния от всех точек N до точки О, определяемые формулой 123 всегда конечны. Этот эллипсоид называется эллипсоидом инерции. Центр эллипсоида находится в начале координат. Три оси эллипсоида называются главными осями инерции тела в точке О, а моменты инерции относительно этих осей- главными моментами инерции. Величины называются центробежными моментами инерции соответственно относительно осей y и z, z и x, x и y.

2)При поступательном движении тела все его точки движутся также как и и его центр масс. Поэтому дифференциальные уравнения движения центра масс тела являются дифференциальными уравнениями поступательного движения твёрдого тела: с y и z такие же уравнения m- масса тела, - координаты центра масс тела - проекция внешней силы F на оси координат X,Y,Z – проекции главного вектора внешних сил R на эти оси. По дифференциальным уравнениям поступательного движения можно решать два основных типа задач на поступательное движение твёрдого тела: 1) по заданному движению твёрдого тела определить главный вектор, приложенных к нему сил 2) по заданным внешним силам, действующим на тело, и начальным условиям движения находить кинематические уравнения движения тела, если известно, что оно движется поступательно.

Уравнение представляет собой дифференциальное уравнение вращения твёрдого тела вокруг неподвижной оси. По дифференциальному уравнению можно решать следующие задачи: 1) по заданному уравнению вращения тела и его моменту инерции определять главный момент внешних сил, действующих на тело : 2) по заданным внешним силам, приложенным к телу, по начальным условиям вращения и по моменту инерции находить уравнение вращения тела 3) определять момент инерции тела относительно оси вращения, зная величины и

19.1) Дифференциальные уравнения движения механической системы. Т- ма о движении центра масс системы.

2)Движение тел в воздухе при наличии сопротивления, пропорционального квадрату скорости.

1 )

эти уравнения называются уравнениями движения механ. сист. в вектр. ф – ме.

Теорема: Произведение массы механической системы на ускор. ее центра масс = гл. вектору всех действ на сист. внешних сил. Данная теорема позволяет глубже раскрыть значение матер. точки и изучения динамики ее движения.

2)

При движении тел в газах в частности в воздухе при скорости до 300 м\с сила сопротивления пропорциональна квадрату скорости, т.е. где x- const

20.1)Закон сохранения движения центра масс. Примеры.

2)Решение задачи о движении тела, брошенного под углом к горизонту.

1)

А) Если гл. вектор внешних сил, прилож. к механ. сист. все время равен 0 то ее центр масс находится в покое или движется равномерно и прямолинейно.

Б) Если проекция гл. вектора внеш. сил на какую- нибудь неподвижную ось остается все время равным 0 то и проекция ц. масс механ. сист на эту ось движется равномерно и прямолинейно.

Рассмотрим пример, который позволяет применить т - му о движ. Центра масс: движение тела по горизонтальной шероховатой пов - ти. Перемещение ц. масс тела происходит за счет сцепления между обувью и поверхностью, т.е за счет внешних по отношению к человеку сил, то возникают эти силы только при соотв. напряж. мускулов человека, что создает позицию движения за счет них, однако если бы сцепление отсутствовало, то человек не мог бы перемещаться наверх.

Fм


Характеристики

Тип файла
Документ
Размер
14,28 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее