10428 (630183), страница 4
Текст из файла (страница 4)
21. Морфологические и физиологич особенности риккетсий, хламидий и микоплазм
Риккетсии - облигатные внутриклеточные паразиты эукариот; гр- бактерии, имеющие форму коротких палочек с закругленными концами и кокков, иногда нитей. Клеточная стенка содержит пептидогликан, цитоплазматическая мембрана характеризуется высокой проницаемостью. Имеют рибосомы, нуклеоид, размножаются в цитоплазме, реже в ядре пораженных клеток хозяина поперечным делением, нитевидные формы - дроблением. Хламидии - облигатные внутриклеточные паразиты млекопитающих и птиц со сложным циклом развития. Гр- бактерии, имеющие форму кокков, В процессе развития проходят 3 стадии: элементарного тельца (шаровидной ф-мы, имеют компактный нуклеоид и ригидную 3-х слойную клеточн стенку, кот устойчива к осмат Р, к механ воздействиям, трипсину; способны склеивать эритроциты; способны выживать во внешн среде), ретикулярное тельце (сферическое образование, имеющ сетчатую структуру с тонкой клеточн ст и фибриллярный нуклеоид) и промежуточное тельце (промежуточная стадия между элементарн и ретикулярн тельцем). Элементарное тельце – инфекционная ф-ма, а ретикулярн – вегетативная (размножается путём бинарного деления внутриклеточно). Микоплазмы - мельчайшие свободноживущие прокариоты без ригидной клеточной стенки. Роль клеточной стенки у них выполняет 3-х слойная цитоплазматическая мембрана.
Основным липидным компонентом мембраны являются стерины, в цитоплазме располагаются рибосомы и нуклеоид. Микоплазмы не синтезируют пептидогликан. Обладают выраженным полиморфизмом - от мелких сферических, кольцевидных клеток до нитевидных, ветвящихся мицелиальных форм. В культурах на жидких питат ср обнаруживаются шаровидные образования, их называют элементарными телами, они являются минимальными репродуцирующими единицами. Все микоплазмы гр-. Фильтруются через бактериальные фильтры. Большинство фак анаэробы, но т/ж аблигатные аэробы. Могут расти как на бесклеточн, так и клеточн пит ср. Размнож путём бинарного поперечного деления.
22. Актиномицеты (св-ва, практическое значение)
Актиномицеты (лучистые грибы) одноклеточные гр+ бактерии. Их тело (мицелий) состоит из тонких и длинных гиф (нитей), способных к истинному ветвлению: гифы могут быть прямыми или спиралевидными и имеют единую с основной нитью оболочку и протопласт. На плотных средах актиномицеты образуют субстратный, врастающий в среду, и воздушный мицелий. Кроме мицеллярных встречаются палочковидные и кокковидиые формы. Строение аналогично гр+ бактериям, клеточн стенка содержит пептидогликан и не имеет, как у грибов, хитина и целлюлозы. Размножаются при помощи спор (конидий); из отдельных ветвей зрелых гиф воздушного мицелия образуются спороносцы, которые в результате сегментации превращаются в споры. В благоприятных услов они прорастают в вегетативные клетки. Гетеротрофный тип питания и аэробный тип дыхания, встречаются также и анаэробы. Отдельные виды синтезируют пигменты: розовый, желтый, синий и др. Обитают преимущественно в почве, обнаруживаются в воде, на растениях, коже и слизистых оболочках животных, разлагают органические субстраты, в том числе недоступные для др микроорган. Играют важную роль в круговороте в-в и Е, образовании почвы и ее плодородии. Многие служат продуцентами антибиотиков, витам, аминок-т, ферментов. Большинство сапрофиты, но есть и патогенные. К ним относится Actinomyces bovis — возбудитель актиномикоза крс.
23. Культивирование анаэробных микроорганизмов в условиях лаборатории
Микроорганизмы, выращенные на искусственных пит ср – микробными культурами, а получение их роста на пит ср - культивированием. Для культивирования необходимы условия: оптимальный температурный режим с учетом, к какой группе относится исследуемый вид бактерий, соответствующие пит ср, аэробиоз (или анаэробиоз). Для обеспечения постоянной оптимальной температуры служат термостаты. Лабораторный термостат - шкаф с двойными стенками, снаружи облицованный материалом непроводником тепла (пластик), внутренняя стенка металлическая. Между двумя металлическими стенками находится вода (или воздух), подогреваемая электричеством. От нагретой воды через внутреннюю металлическую стенку тепло поступает в термостат. Внутри имеются сетчатые полочки, на которых размещают штативы с пробирками, чашки Петри и др. Постоянная температура поддерживается при помощи терморегуляторов - при достижении температуры заданного уровня автоматически происходит отключение прибора; при снижении температуры термостат вновь включается автоматически. Помимо обеспечения температурного режима, следует учитывать тип дыхания микроорганизмов: при аэробном типе дыхания никаких дополнительных условий создавать не нужно. Для анаэробов необходимо исключать доступ кислорода. С этой целью используют эксикатор или анаэростат. Эксикатор - стеклянный сосуд с притертой крышкой. Крышка может быть сплошная или с отверстием в центре. В отверстие вставляют пробку, в неё стеклянные канюли с резиновым шлангом для подключения к насосу для выкачивания воздуха. Создание анаэробиоза можно осуществить физическим, химическим и биологическим методами. Физический – из герметично закрытого эксикатора выкачивают воздух и помещают его в термостат. Используют анаэростаты - металлический, герметически закрывающийся сосуд, снабжённый кранами для удаления воздуха и вакуум-манометром. Используются термоанаэростаты -анаэростат, нагреваемый, как термостат. Хим способ - используют эксикатор без отверстия. На дно ставят чашку Петри с хим в-вами, которые активно связывают кислород воздуха. Сверху ставят подставку с отверстиями, а на нее — пробирку или чашки Петри крышку плотно закрывают. Биологический - совместном выращивании анаэробов и аэроб.
24.Питательные среды для культивирования прокариот и эукариот. Химический состав, способы приготовления, классификация
Питательные среды различают по консистенции жидкие, полужидкие, плотные (твердые); происхождению - животного или растительного и синтетические питательные среды (определенного состава); по назначению: 1) универсальные; 2) специальные: а) для культивирования отдельных видов, не растущих на обычных ср; б) дифференциально-диагностические- для определения особенностей бактериальных культур (сахаролитических, протеолитических св-в); в) селективные - для выделения микробов одного вида из исследуемого материала; г) элективные среды (избирательные); д) среды накопления, в кот подавляется рост сопутствующих бактерий и беспрепятственно развивается, накапливается искомый вид, содержавшийся в небольшой концентрации. Широко применяют среды животного происхождения - МПБ, МПА, МПЖ. К любым пит ср предъявляются требования: стерильность, оптимальная рН, наличие в среде необходимых пит в-в, достаточная влажность. Приготовление универсальных пит ср. МПБ жидкая пит ср, прозрачная. Исходный материал - мясная вода: свежее говяжье мясо нарезают мелкими кусочками, заливают водой 1 : 2; экстрагируют 24 ч, варят 1,5-2 ч, выкипающее кол-во жидкости доливают водой, фильтруют в колбы, закрывают пробками и стерилизуют в автоклаве 30 мин. Добавляют пептон и NaС1. Так как мясная вода имеет слабокислую реакцию, при изготовлении МПБ бульон подщелачивают (добавляют КОН), кипятят 2-3 мин. МПА- плотная пит ср. К МПБ добавляют промытого мелко нарезанного А (безазотистое органическое в-во, получаемое из морских водорослей), расплавляют А, фильтруют через ватно-марлевый фильтр. Чтобы А не уплотнился, фильтрацию проводят в аппарате Коха или пользуются специальной металлической двустенной воронкой, внутрь которой (между стенками) заливается горячая вода. Разливают по пробиркам, стерилизуют 30 мин в автоклаве. Пробирки раскладывают в наклонном положении, оставляют при комнатной температуре, среда уплотняется, становится твердой. ПМПА готовят как МПА только добавляют меньше А. Кипятят до расплавления, фильтруют, стерилизуют в автоклаве. Приготовление специальных пит ср. МПЖ. К МПБ добавляют желатины, расплавляют её, фильтруют, разливают в пробирки, стерилизуют текучим паром. МППБ Китта - Тароцци. Готовят печеночную воду: печень крс нарезают мелкими кусочками, заливают водой 1:1, кипятят, фильтруют, стерилизуют. Её смешивают с МПБ 2:1. Кипятят, разливают по пробиркам. Перед разливом в пробирки кладут кусочки варенной печени, сверху среды заливают 1-2 мл вазелинового масла, стерилизуют в автоклаве 30 мин. Сахарный МПБ. К МПБ добавляют глюкозы, разливают в пробирки, стерилизуют текучим паром 20 мин. Сахарный МПА. К расплавленному МПА добавляют глюкозы, разливают в горячем виде, стерилизуют. Сывороточный МПБ и МПА. Сыворотку крови добавляют к МПБ в колбочках; если сыворотку добавить к расплавленному МПА - сывороточный А- разливают в чашки. Кровяной МПА. Полученную дефибринированную кровь добавляют к расплавленному МПА, перемешивают, разливают в чашки. В термостат дном вверх. Дифференциально-диагностические ср. Ср Гисса. Основой явл пептонная вода (NаС1, пептон, растворенные в дистиллированной воде), к ней добавляют углеводы и индикатор Андредэ (р-р фуксина, р-р NаОН в дистиллированной воде), фильтруют, разливают в пробирки с поплавками. Стерилизуют текучим паром. Среда Эндо. МПА расплавляют, добавляют лактозы, фуксин, обесцвеченный сернокислым Na. Всё кипятят и разливают по чашкам. Агар Левина - А Хоттингера с р-ром метиленового синего, бактериологическим щелочным эозином, лактозой, двуосновным фосфорнокислым калием. Порошок ср Левина растворяют в воде, кипятят 5 мин, разливают по чашкам. В термостат. Селективная и дифференциально-диагностическая среда Плоскирева - А, содержащий лактозу, соли желчных к-т, кальцинированную соду, бриллиантовую зелень, NаС1, индикатор нейтральный красный, для получения среды сух порошок разводят в дистиллированной воде. Висмут-сульфит-агар: МПА, содержащий цитрат висмута, сульфит натрия, дифосфат натрия, бриллиантовую зелень, глюкозу, кальцинированную соду. Сух в-во разводят в дистиллированной воде, охлаждают, взбалтывают, разливают по чашкам Петри. В термостат. Молоко - слегка подщелачивают двууглекислой содой, фильтруют, разливают в пробирки, стерилизуют текучим паром. Среды накопления. Среда Шустовой - МПА с добавлением водного р-ра натрийтиосульфата и р-ра Люголя. Растительные питательные среды. Картофельные ср - картофель очищают, нарезают, погружают в р-р двууглекислой соды на 1-2 ч, просушивают фильтровальной бумагой и помещают в пробирки Ру. На дно пробирки до перетяжки наливают глицеринизированную воду. Стерилизуют 20 мин.
25. Санитарно – бактериологическое исследование воды и воздуха. Практическое значение
Санитарная оценка воды выражается общим микробным числом, качественным и количественным определением загрязнённости ее бактериями группы кишечной палочки. Определение общего количества бактерий в воде. Из открытых водоемов делают последовательные разведения по общепринятой методике - 1 мл воды переносят в пробирку с 9 мл водопроводной воды, размешивают ее и 1 мл переносят в следующую пробирку. Всего 3-7 разведений. Из каждой пробирки берут по 1 мл и вносят в чашку Петри, заливают расплавленным МПА. Ставят в термостат. Кол-во колоний рассматривают под лупой. Определение коли-титра. - наименьшее количество воды, в которой обнаруживают кишечную палочку. Для определения используют бродильную пробу и метод мембранных фильтров. Бродильная проба - воду в определенных количествах высевают на среду накопления, затем при наличии роста, характерного для кишечной палочки, пересевают на дифференциально-диагностические среды. Метод мембранных фильтров чаще применяют в лабораторной практике - определенный объем воды пропускают под давлением через фильтры %3, изготовленные из нитроцеллюлозы, с последующим наложением их матовой стороной на поверхность А Эндо, выдерживанием в термостате. Затем выросшие колония подсчитывают, изучают, определяют коли-титр и коли-индекс. Исследование воздуха. Воздух является благоприятной средой для обитания микроорганизмов. Для санитарной оценки воздуха учитывают общее кол-во микробов в 1 м³ и качественный состав. Данное исследование осуществляют седиментационным, фильтрационным и аспирационным методами. Седиментационный метод оседания Коха - в чашки Петри с МПА оставляют открытыми на 5 мин в помещении, закрывают, надписывают, в термостат, подсчитывают колонии микробов.Чтобы определить микробное число в воздухе (количество бактерий, содержащихся в 1м³), его подсчитывают по формуле Омелянского: Х = /в
где Х - кол-во микробов в 1 м³ воздуха; а – кол-во выросших колоний в чашках; в - площадь чашки; Т - время, в течение которого чашка была открыта; 5 - время по правилу Омелявского; 10 - объем воздуха в литрах. Правило- на поверхности А в чашке Петри с площадью 100 см² за 5 мин из воздуха оседает такое кол-во микробов, которое находится в его 10 л. Фильтрационный метод (с использованием бактерноуловителей Дьяконова, трубок Микеля, мембранных фильтров) - пропускают через специальную систему определенный объем воздуха. Бактериоуловитель - сосуд со стеклянными бусами и с жидкой средой, закрытый пробкой. Через пробку пропущены 2 трубки: одна до дна, другая - не касается жидкости и соединена резиновым шлангом с разрежающим насосом, снабженным манометром. Пропускают воздуха через систему, содержимое сосуда взбалтывают и 1 мл жидкости вносят в чашку Петри с расплавленным А, выдерживают в термостате, подсчитывают колонии. Полученное число умножают на объем жидкой среды в сосуде, делят на количество литров пропущенного воздуха и умножают на 1000 (кол-во литров воздуха в 1м³). Мембранный метод. После пропускания воздуха через мембранные фильтры фильтрующие мембраны накладывают на поверхность А в чашке Петри, культивируют в термостате, подсчитывают кол-во выросших колоний. Полученное число делят на кол-во литров пропущенного воздуха и умножают на 1000. Аспирационный метод с использованием аппарата Кротова - цилиндрической формы металлический сосуд, внутри которого вмонтирован электромотор с центробежным вентилятором и вращающимся диском. Корпус прибора закрывается крышкой с радиально расположенной клиновидной щелью. При вращении вентилятора воздух засасывается через щель крышки, ударяется о поверхность пит ср, вращающейся на диске чашки Петри, и содержащиеся в струе воздуха бактерии оседают. Имеющийся в приборе ротаметр указывает кол-во пропущенного воздуха. Затем чашки помещают в термостат. Подсчитывают кол-во выросших колоний и микробное число воздуха.
26. Классификация микроорган по Берги. Номенклатура микроорган. Понятие о виде микроорган