183942 (629981), страница 4

Файл №629981 183942 (Математические модели потребительского поведения и спроса) 4 страница183942 (629981) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

При анализе задачи оптимального выбора обычно применяется еще одно важное предположение теории потребления, которое носит название гипотезы ненасыщения потребителя и состоит в том, что для любых двух наборов x и y справедливо соотношение:

если x y, то «x = y».

Также считается справедливым и более точное соотношение:

если x y и x y, то «x > y».

Это означает, что для «ненасыщаемого» потребителя всякий набор x, который содержит любого продукта столько же, либо (хотя бы по одной позиции) несколько больше, чем набор y, оказывается более предпочтительным. Предположение о ненасыщении при помощи функции полезности выражается следующим образом:

  • если x y, то u(x) u(y).

  • если x y и x y, то u(x) > u(y).

Таким образом, функция полезности является монотонно возрастающей по каждому аргументу xj.

Если функция полезности имеет производные по своим аргументам, то из предположения о ненасыщаемости (и монотонности u(x)) следует, что все первые частные производные функции полезности являются положительными, т.е.:

(j = 1, ..., n)

для любого набора потребительских благ. Величина частной производной:

имеет следующий экономический смысл: она показывает, на сколько увеличится полезность набора, если количество потребляемого блага увеличится на «малую единицу». В связи с этим указанная производная носит название предельной (маргинальной, дифференциальной) полезности.

В экономических исследованиях, как правило, используются некоторые конкретные виды выпуклых функций полезности, причем подбор вида функции и оценка числовых значений параметров производится на основе наблюдений и анализа поведения потребителей. Чаще всего применяются линейная, квадратическая и логарифмическая функция вида:

В пространстве двухэлементных наборов x=(x1, x2) поверхности безразличия (т.е. линии u(x1, x2)=const) обычно называются кривыми безразличия.

Например, для логарифмической функции:

u(x1, x2)= log x1 + log x2

кривые безразличия имеют вид:

log x1 + log x2 = log (x1 x2) = const ,

т.е. являются просто гиперболами в положительном ортанте, удовлетворяющими уравнениям:

(x1 x2) = const

Рис. 5.15. Кривые безразличия

На рис. 5.15 C2 > C1, т.е. более высокая кривая безразличия соответствует большему уровню полезности тех наборов, которые составляют кривую безразличия.

Рассмотрим задачу оптимального выбора потребителя для ненасыщаемого потребителя:

Нетрудно заметить, что оптимальный набор ( , , ) необходимо должен удовлетворять бюджетному ограничению как точному равенству. В самом деле, если бы оптимальный набор достигался бы при условии:

,

то потребитель мог бы купить на оставшиеся деньги некоторое количество любого блага, и тем самым получить новый набор с большей полезностью. Это означает, что внутренняя точка множества не может быть оптимальным набором.

Таким образом, задача об оптимальном наборе имеет вид:

u(x) = u(x1 ,..., xj ,..., xn) max

.

Решение этой задачи на условный экстремум находится при помощи метода множителей. Оптимальный набор определяется путем решения следующей системы из (n+1) уравнения:

относительно (n+1)-го неизвестного, а именно элементов оптимального набора ( , , ) и множителя Лагранжа .

Таким образом, при заданной системе цен потребитель должен выбрать такой набор, а котором все предельные полезности пропорциональны ценам. При этом оптимальное значение множителя Лагранжа часто называют «предельной полезностью денег» и трактуют как прирост максимальной полезности при увеличении дохода I на малую единицу. Заметим, что соотношения оптимальности могут быть представлены в виде:

,

который допускает любопытную интерпретацию: в оптимальной точке величина дополнительной полезности в расчете на одну денежную единицу должна быть одинакова для всех товаров и услуг. Необходимо также отметить, что для некоторых товаров могут быть выполнены соотношения:

,

которые означают, что такие товары сравнительно мало полезны и относительно дороги, а поэтому и не должны быть включены в оптимальный набор потребителя, максимизирующего свою полезность при ограниченном доходе.

Рассмотрим простой пример.

Пусть n=2, функция полезности:

u(x1, x2) = ln x1 + ln x2,

бюджетное ограничение:

p1x1 + p2x2 = I.

Решение задачи оптимального выбора

отсюда:

Используя бюджетное ограничение, имеем:

Как видно из приведенного решения оптимальный выбор потребителя имеет очень естественный вид: количество потребляемого блага прямо пропорционально доходу (I) и обратно пропорционально его цене. Геометрическая интерпретация решения задачи оптимального выбора приведена на рис. 5.14.

В более реалистичных вариантах постановки задачи оптимального выбора при помощи дополнительных условий могут быть учтены ограничения по ассортименту потребляемых товаров и услуг, возможность взаимной замены различных продуктов и т.п.


5 Функции спроса. Коэффициент эластичности

В результате решения задач оптимального выбора оказывается возможным проследить связь между изменением систем цен и доходов группы потребителей, с одной стороны, и спросом этой группы на товары и услуги, с другой; и построить, таким образом, функцию оптимального спроса.

В достаточно общей форме оптимальный спрос выражается при помощи функций вида:

.

В ряде случаев функции оптимального спроса имеют особенно простой вид. Так, если функция полезности имеет логарифмический вид, то оптимальный спрос выражается формулой:

, где .

В подавляющем большинстве случаев, однако, конкретная форма функции спроса определяется путем статистической обработки результатов специальных наблюдений за доходами и расходами представителей различных социальных групп. В результате изучения функции спроса обычно устанавливаются некоторые классификационные признаки товаров.

Если для некоего товара выполняется условие:

то товар называется нормальным, так как спрос на него снижается по мере увеличения его цены. Однако существуют товары, спрос на которые повышается, невзирая на повышение цены. Эта парадоксальная ситуация возникает тогда, когда при повышении цены на малоэффективный товар (например, картофель) группа потребителей с низким доходом просто не может приобретать более высококалорийный продукт (мясо) и вынуждена компенсировать нехватку калорий усиленной покупкой картофеля.

Товары, для которых имеет место неравенство:

,

называются аномальными или товарами Гиффина.

При фиксированном доходе и в практических целях для нормальных товаров используются, как правило, функции спроса двух видов:

1) линейная функция спроса

,

где a0 > 0, a1 > 0, статистически оцениваемые параметры модели.

2) степенная функция спроса:

.

Во многих прикладных исследованиях значительную роль играет коэффициент эластичности.

Мера реагирования эндогенной переменной на изменение экзогенной переменной называется эластичностью. Однако это определение слишком общее. Конкретнее, эластичность можно определить как предел соотношения между относительным приращением функции y:

(зависимой переменной) и относительным приращение независимой переменной x:

,

когда и обозначается Ex(y).

Таким образом эластичность можно выразить формулой:

при

или в непрерывном случае:

Из практических соображений эластичность относят к проценту прироста независимой переменной. В этом случае эластичность показывает, насколько процентов повышается или понижается эндогенная переменная Y, если независимая переменная X изменяется на 1%.

Различают дуговую эластичность, то есть среднюю на каком-то отрезке кривой, и точечную эластичность – значение производной в заданной точке. Для практического вычисления эластичности используется формула английского математика и экономиста Рой Аллена (1906 – 1983). Он предложил использовать среднюю точку интервала, по которому происходит изменение в качестве знаменателя дроби. Тогда вычисляются:

  • относительное изменение эндогенной переменной

;

  • относительное изменение экзогенной переменной

.

Затем вычисляется отношение первого ко второму. Необходимо помнить, что формула Аллена, хотя и популярная, но не единственно возможная. Однако ее не следует применять к очень широким интервалам, так как в этом случае она может ввести в заблуждение.

Для определения эластичности спроса от цены можно воспользоваться формулой:

при

или

,

Коэффициент эластичности спроса по цене показывает, на сколько процентов уменьшится (увеличится) спрос, если цена товара увеличится (уменьшится) на 1%.

Для линейной функции спроса принимается, что:

,

где - среднее значение цены, - среднее значение спроса по использованной выборке.

Очевидно, что для cтепенной функции спроса:

.

Если коэффициент эластичности близок к нулю, то спрос на товар практически не зависит от его цены. В этом случае говорят, что спрос неэластичен по цене. Это относится в основном к предметам первой необходимости. Спрос называется нормально эластичным, если Edp 1, что имеет место для товаров длительного пользования. Для предметов роскоши обычно Edp > 1, т.е. спрос является суперэластичным.

При постоянных ценах товары различаются по характеру изменения спроса в зависимости от величины дохода I. Товар j называется ценным (или товаром высшего ряда), если

Характеристики

Тип файла
Документ
Размер
3,9 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее