183883 (629953), страница 3
Текст из файла (страница 3)
Як бачимо, зв'язок є прямим. Такий результат цілком узгоджується з ідеєю загального позитивного впливу освітнього рівня на економічне зростання. А щільність зв'язку (Я2 = 0,45) є суттєвою, тож можна зробити висновок, що частка тих, хто навчався, у населенні країни є впливовим фактором щодо темпів економічного зростання.
Знання сутності методу і його можливостей щодо оцінювання інформації дає змогу ефективно використовувати статистичні методи для аналізу взаємозв'язків між економічними явищами. Ці методи втрачають інтерес у практичній роботі аналітика, коли немає впевненості в їх відповідності при вирішенні конкретних завдань.
Рис.1. Зв'язок між темпом економічного зростання та часткою тих, хто навчався
Вивчення причинно-наслідкових зв'язків здійснюють шляхом застосування статистичних методів у такій послідовності: статистичне групування; індексний аналіз; дисперсійний аналіз; кореляційно-регресійний аналіз; методи багатомірного статистичного аналізу (метод головних компонент, кластерний аналіз, факторний аналіз). Одержані результати розрахунків перевіряють на вірогідність за відповідними критеріями надійності. Порядок і послідовність комплексного підходу у статистико-економічному дослідженні схематично наведено на рис. 1.
6. Застосування статистичних методів на практиці
Потрібно відзначити, що в економічних розрахунках аналітичного напрямку майже зовсім не використовується досить ефективний спосіб математико-статистичної обробки даних - дисперсійний метод аналізу. Як і інші ймовірнісно-статистичні методи, він набагато розширює можливості економістів в аналізі виробництва й ефективності прийняття управлінських рішень. За його допомогою розв'язуються наступні аналітичні завдання: кількісне вимірювання сили впливу факторних ознак та їх сполучень на результативну; вивчення вірогідності впливу та його довірчих меж; аналіз окремих середніх та статистична оцінка їх різниць. У поглибленому економічному аналізі дисперсійний метод може виконувати допоміжні функції. У цьому плані його використання відкриває широкі можливості щодо науково-обґрунтованого підходу застосування інших статистичних методів кількісного аналізу.
Наведені нижче розрахунки щодо кількісного виміру впливу факторів ефективного використання земель сільськогосподарськими підприємствами послугують прикладом практичного застосування статистичних оцінок в аналітичній роботі.
Оскільки доцільність збільшення обсягів матеріальних, грошових і трудових вкладень у виробництво повинно корелювати з підвищенням показників економічної ефективності використання землі, зазначену залежність легко встановити шляхом побудови комбінаційних статистичних групувань (табл. 1).
Рис. 2. Схема комплексного статистико-математичного аналізу
Результати останніх свідчать, що у сільськогосподарських підприємствах підвищення рівня інтенсивності виробництва забезпечується зростанням показників ефективності використання земельних ресурсів через урожайність, продуктивність праці і прибутковість використаної одиниці площі сільськогосподарських угідь. Але збільшення матеріально-грошових та трудових витрат на одиницю земельної площі не завжди забезпечує адекватне підвищення рівня ефективності виробництва.
Досліджувані фактори (зростання їх рівнів) не тільки сприяють підвищенню урожайності зернових культур, але й зумовлюють збільшення рівня витрат виробництва на одиницю продукції. Хоча врешті одиниця земельної площі дає найбільший прибуток у тих підприємствах, які характеризуються найвищими показниками інтенсивності вкладень на цю площу. Причини неадекватності залежності інтенсивності виробництва та собівартості слід шукати у технологічних процесах вирощування зернових культур. Зростання прибутковості гектара площі ріллі за таких обставин може бути пояснене підвищенням рівня якості реалізованого зерна. Найкращі економічні показники в регіоні мають підприємства підгрупи А2В2. Виробництво валової продукції з одиниці площі найвище в підгрупі А3В1, тобто при високому рівні матеріально-грошових витрат і нижчих показниках трудових вкладень. Підприємства з раціональним рівнем інтенсивності виробництва зосереджені в групі А2. Отже, результати комбінаційних статистичних групувань орієнтують на ефективність додаткових матеріальних вкладень та обмеження показників трудоємності одиниці площі.
Таблиця 1. Вплив рівня інтенсивності виробництва та трудових вкладень на ефективність використання землі в досліджуваних сільськогосподарських підприємства
Показники | Витрати виробництва на 1 га ріллі, грн. | ||||||
А1 - 351 - 1346 А2 - 1350 - 1978 А3 - 2038 - 9294 | |||||||
Витрати праці на 1 га ріллі, тис. люд.-г. | |||||||
В1 - 0,34 - 0,68 | В2 - 0,68 - 1,01 | В1 - 0,39 - 0,50 | В 2 - 0,52 - 0,86 | В1 - 0,57 - 0,78 | В2 - 0,79 - 1,01 | ||
Кількість підприємств, шт. | 9 | 9 | 9 | 9 | 9 | 10 | |
Витрати виробництва на 1 га ріллі, грн. | 1016 | 970 | 1594 | 1633 | 2416 | 4082 | |
Затрати праці на 1 га ріллі, тис. люд.-г. | 0,56 | 0,78 | 0,48 | 0,68 | 0,68 | 0,91 | |
Вартість основних виробни -чих фондів на 100 га сільськогосподарських угідь, тис. грн. | 176 | 146 | 182 | 165 | 305 | 220 | |
Чисельність працюючих на 100 га сільськогосподарсь -ких угідь, чол. | 7 | 5 | 8 | 7 | 8 | 7 | |
Питома вага зернових в загальній площі посіву, % | 58 | 50 | 52 | 43 | 48 | 51 | |
Площа посіву зернових на середньорічного працівника, га | 8,4 | 11,2 | 9,1 | 7,9 | 8,7 | 8,8 | |
Урожайність зернових культур, ц. з 1 га | 26,2 | 31,0 | 34,5 | 36,9 | 36,3 | 36,8 | |
Виробництво валової продукції на 1 га ріллі, грн. | 1417 | 1494 | 1556 | 1632 | 1847 | 1702 | |
Собівартість 1 ц. зерна, грн. | 31,55 | 41,34 | 41,09 | 41,31 | 41,57 | 42,36 | |
Прибуток на 1 га ріллі, грн. | 3621 | 3670 | 3791 | 3699 | 2846 | 4052 | |
Рівень рентабельності, % | 25,0 | 25,9 | 28,7 | 32,8 | 24,9 | 26,7 |
Розглянемо приклад кількісних змін продуктивного потенціалу одного гектара земельних угідь у районах Полтавського регіону в залежності від інтенсивних факторів виробництва.
Для вивчення кількісної залежності між показниками чистого прибутку, рівнем фондооснащеності та інтенсивності виробництва розраховано двофакторний дисперсійний комплекс за наступними параметрами:
V - чистий прибуток, грн. (результативна ознака); А - вартість основних виробничих фондів на 1 гектар сільськогосподарських угідь, грн.; В -витрати виробництва, грн.
В основу розрахунку такого комплексу покладено комбінаційне групування досліджуваних підприємств за двома зазначеними вище фактора ми. Одержані статистичні характеристики дисперсійного аналізу дозволяють зробити наступні висновки: ступінь впливу фондооснащеності та інтенсивності виробництва, а також взаємодії цих факторів становить 42% у варіації показника чистого прибутку гектара угідь; неврахованих факторів - 58 відсотків. Вплив фактора фондооснащеності складає 36%; фактора інтенсивності матеріально-грошових вкладень - 5%; їх взаємодії - 1 відсоток.
Дослідження впливу фондо - і трудооснащеності гектара земельних угідь свідчить про наступне. Ступінь впливу названих факторів становить 55 відсотків. Зокрема, перший з них зумовлює варіацію показника прибутку на 18%, другий - на 32%. Їх взаємодія характеризується показником 5%.
Одержані статистичні ознаки кількісно ілюструють, що залежність отриманого чистого прибутку від досліджених факторів очевидна. Але аналіз вихідної інформації заставляє замислитися, адже в окремих підприємствах фондозабезпеченість виявилась невиправдано низькою на рівні високих показників прибутку. Таку розбіжність можна пояснити невідповідністю вартості основних засобів їх реальній корисності, неефективним використанням ресурсів, неоднаковими потребами виробництва тощо.
Для кількісної оцінки залежності між рівнем та якістю використання сільськогосподарських угідь розглянемо кореляційно-регресійну модель прибутковості гектара, зумовлену факторами: матеріально-грошові витрати на 1 гектар сільськогосподарських угідь, грн. (Х1); розораність сільськогосподарських угідь, % (Х2); землезабезпеченість на одного працівника, га (Х3); вартість основних виробничих фондів в розрахунку на 1 гектар сільськогосподарських угідь, грн. (Х4).
Одержане рівняння множинної регресії має аналітичний вигляд:
7 =-1526,747+0,526Х1+6,247Х2-
-2,235Х3+0,080Х4.(1)