183422 (629834), страница 3
Текст из файла (страница 3)
Им придается соответственно два количественных значения: варианты 1 и 0.
Частостью варианты 1, которая обозначается p, является доля единиц, обладающих данным признаком. Разность 1-р=q является частостью варианты 0. Таким образом,
хi | wi |
1 | p |
0 | q |
Средняя арифметическая альтернативного признака
, т.к p+q=1.
Дисперсия альтернативного признака
, т.к1-р=q
Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.
Если значения 1 и 0 встречаются одинаково часто, т.е. p=q, дисперсия достигает своего максимума pq=0,25.
Дисперсия альтернативного признака используется в выборочных обследованиях, например, качества продукции.
2.1.3 Межгрупповая дисперсия. Правило сложения дисперсий
Дисперсия, в отличие от других характеристик вариации, является аддитивной величиной. То есть в совокупности, которая разделена на группы по факторному признаку х, дисперсия результативного признака y может быть разложена на дисперсию в каждой группе (внутригрупповую) и дисперсию между группами (межгрупповую). Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучение вариации в каждой группе, а также между этими группами.
Общая дисперсия измеряет вариацию признака у по всей совокупности под влиянием всех факторов, вызвавших эту вариацию (отклонения). Она равна среднему квадрату отклонений отдельных значений признака у от общей средней
и может быть вычислена как простая или взвешенная дисперсия.
Межгрупповая дисперсия характеризует вариацию результативного признака у, вызванную влиянием признака-фактора х, положенного в основу группировки. Она характеризует вариацию групповых средних и равна среднему квадрату отклонений групповых средних
от общей средней
:
,
где - средняя арифметическая i-той группы;
- численность единиц в i-той группе (частота i-той группы);
- общая средняя совокупности.
Внутригрупповая дисперсия отражает случайную вариацию, т.е. ту часть вариации, которая вызвана влиянием неучтенных факторов и не зависит от признака-фактора, положенного в основу группировки. Она характеризует вариацию индивидуальных значений относительно групповых средних, равна среднему квадрату отклонений отдельных значений признака у внутри группы от средней арифметической этой группы (групповой средней)
и вычисляется как простая или взвешенная дисперсия для каждой группы:
или
,
где - число единиц в группе.
На основании внутригрупповых дисперсий по каждой группе можно определить общую среднюю из внутригрупповых дисперсий:
.
Взаимосвязь между тремя дисперсиями получила название правила сложения дисперсий, согласно которому общая дисперсия равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий:
Пример. При изучении влияния тарифного разряда (квалификации) рабочих на уровень производительности их труда получены следующие данные.
Таблица 5 - Распределение рабочих по среднечасовой выработке.
№ п/п | Рабочие 4-го разряда | № п/п | Рабочие 5-го разряда | |||||
Выработка рабочего, шт., |
|
| Выработка рабочего, шт., |
|
| |||
1 2 3 4 5 6 | 7 9 9 10 12 13 | 7-10=-3 9-10=-1 1 0 2 3 | 9 1 1 0 4 9 | 1 2 3 4 | 14 14 15 17 | 14-15=-1 1 0 2 | 1 1 0 4 | |
| 60 | - | 24 | 60 | - | 6 |
В данном примере рабочие разделены на две группы по факторному признаку х- квалификации, которая характеризуется их разрядом. Результативный признак - выработка - варьируется как под его влиянием (межгрупповая вариация), так и за счет других случайных факторов (внутригрупповая вариация). Задача заключается в измерении этих вариаций с помощью трех дисперсий: общей, межгрупповой и внутригрупповой.
Определяем групповые и общую средние выработки, шт:
по первой группе шт.,
по второй группе шт.,
по двум группам шт.
Рассчитываем и заносим в таблицу и
.
Рассчитываем внутригрупповые дисперсии:
по первой группе ,
по второй группе
Внутригрупповые дисперсии показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (состояние оборудования, обеспеченность материалами и инструментами, возраст рабочих и т.д.), кроме различий в квалификации, т.к внутри группы все рабочие имеют одинаковый разряд.
Вычисляем среднюю из внутригрупповых дисперсий:
Средняя дисперсия отражает вариацию выработки, обусловленную всеми факторами, кроме квалификации, но в среднем по совокупности.
Межгрупповая дисперсия, характеризует вариацию среднегрупповых выработок, вызванную различием групп рабочих по квалификационному разряду:
Вычисляем общую дисперсию совокупности, которая отражает суммарное влияние всех возможных факторов на общую вариацию выработки изделий всеми рабочими:
Определяем общую дисперсию по правилу сложения дисперсий:
Очевидно, что чем выше доля межгрупповой дисперсии в общей дисперсии
, тем сильнее влияние факторного признака (разряда) на результативный (выработку).
Эта доля характеризуется эмпирическим коэффициентом детерминации:
Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х. Остальная часть общей вариации у вызвана изменением прочих факторов.
В примере эмпирический коэффициент детерминации равен:
или 66,7%,
Это означает, что на 66,7% вариация производительности труда рабочих обусловлена различиями в квалификации, а на 33,3% - влиянием прочих факторов.
Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:
Эмпирическое корреляционное отношение , как и
, может принимать значения от 0 до 1.
Если связь отсутствует, то =0. В этом случае
=0, то есть групповые средние равны между собой и межгрупповой вариации нет. Значит группировочный признак - фактор не влияет на образование общей вариации.
Если связь функциональная, то =1. В этом случае дисперсия групповых средних равна общей дисперсии (
), то есть внутригрупповой вариации нет. Это означает, что группировочный признак полностью определяет вариацию изучаемого результативного признака.
Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.
| 0 | 0-0,2 | 0,2-0,3 | 0,3-0,5 | 0,5-0,7 | 0,7-0,9 | 0,9-0,99 | 1 |
Сила связи | отсутствует | очень слабая | слабая | умеренная | заметная | тесная | весьма тесная | функцио- нальная |
В примере , что свидетельствует о тесной связи между производительностью труда рабочих и их квалификацией.
2.2 Относительные характеристики вариации
При сравнении вариации различных признаков или одного признака в различных совокупностях, используют относительные характеристики вариации - коэффициенты вариации.
Коэффициенты вариации рассчитываются как отношение абсолютных характеристик вариации (R,d,) к центру распределения и часто выражаются процентами. Линейный коэффициент вариации: . Квадратичный коэффициент вариации:
. Коэффициент осциляции:
Квадратичный коэффициент вариации используют как критерий однородности совокупности. Совокупность считается однородной, если
Если центр распределения представлен медианой, то используют квартильный коэффициент вариации:
3. Теоретические кривые распределения
В вариационных рядах распределения существует определенная связь между изменением частот и значения варьирующего признака: частоты с ростом значения признака сначала увеличиваются, а затем после достижения какой-то максимальной величины в середине ряда уменьшаются. Значит, частоты в рядах изменяются закономерно в связи с изменением варьирующего признака. Такого рода закономерные изменения частот в вариационных рядах называются закономерностями распределения.
Анализ вариационных рядов предполагает выявление такой закономерности распределения, определение ее типа и построение теоретической кривой распределения, характеризующей данный тип распределения. Под кривой распределения понимают графическое изображение в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариант. Эмпирической (фактической) кривой распределения является полигон. Под теоретическим распределением понимают вероятностное распределение частот в наблюдаемом вариационном ряду.
В практике статистического исследования встречаются распределения: нормальное, логарифмическое, биноминальное, Пуассона и др.
3.1 Нормальное распределение
При построении статистических моделей наиболее часто применяется нормальное распределение. Распределение непрерывной случайной величины х называют нормальным, если описывается следующей кривой: