182777 (629617), страница 3
Текст из файла (страница 3)
Чтобы ответить на этот вопрос, мы должны знать предпочтения индивидов. Поскольку коробка Эджуорта представляет собой для каждого индивида пространство благ, для изображения предпочтений мы воспользуемся картой безразличия. Кривые безразличия для Андрея обозначаются буквами UА, они выпуклы по отношению к его началу координат OА, и увеличение полезности означает переход на более высокие кривые (рис. 3). Кривые безразличия для Бориса обозначаются буквами UB, они выпуклы по отношению к его началу координат ОB, а увеличение полезности означает переход на более низкие кривые (карта предпочтений Бориса в нашей коробке как бы перевернута на 180°).
Рис. 3. Эффективность в обмене.
Используя эти кривые безразличия, можно найти точки парето-эффективных размещений. Парето-эффективное размещение наблюдается тогда, когда при заданном уровне полезности одного индивида другой получает максимально возможный уровень полезности. Это означает, что на каждой кривой безраличия одного из индивидов нужно найти точку, в которой полезность другого индивида максимальна. Например, для кривой безразличия Бориса UDB - это точка D, точка касания самой высокой кривой безразличия Андрея. Любая другая точка на кривой UDB, например точка K, не будет парето-эффективной, так как, перемещаясь по направлению к точке D, мы будет увеличивать уровень полезности Андрея, не изменяя уровень полезности Бориса.
Нетрудно понять, что множество точек касания кривых безразличия Андрея с кривыми безразличия Бориса задает все возможные парето-эффективные размещения между индивидами. Заметим, что во всех этих точках выполняется сформулированное ранее условие эффективности в обмене - предельные нормы замены Андрея и Бориса равны, так как равны наклоны кривых безразличия в точках их касания.
Множество этих точек составляет контрактную кривую - на рис. 3 это линия, соединяющая точки ОA и ОB. Поскольку каждое размещение на этой кривой парето-эффективно, при перемещении по контрактной кривой увеличение полезности одного индивида достигается только за счет уменьшения полезности другого. Поэтому контрактную кривую называют также конкурентной.
Этого нельзя сказать о точках вне контрактной кривой. Например, точка G не является парето-эффективным размещением, так как из нее индивиды могут переместиться в другую точку (например, в точку D), увеличив полезность каждого.
Заметим, что контрактная кривая является аналогом кривой возможных полезностей, только в первом случае на осях откладываются количества благ, а во втором - уровни полезности индивидов, получаемые от наборов благ. Если предположить, что уровень полезности измерим количественно, мы сможем построить рис. 1 по данным об уровнях полезности на контрактной кривой на рис. 3.
Без введения количественной меры полезностей наборов благ X и Y о форме этой кривой нельзя сказать ничего определенного, и поэтому кривую возможных полезностей, как правило, изображают не имеющей постоянного знака выпуклости. Единственное, что можно сказать определенно, так это то, что она должна иметь отрицательный наклон. Ведь увеличение уровня поезности одного индивида может произойти только за счет снижения уровня полезности другого (при условии парето-эффективного размещения).
Предположим теперь, что существует некоторое изначальное наделение (endowment) индивидов благами, которое является случайным; например, Андрей и Борис оказались после кораблекрушения на необитаемом острове, причем каждый сумел захватить с собой с тонущего корабля некоторое количество блага X и некоторое количество блага Y. Маловероятно, что получившееся распределение благ будет парето-эффективным. Попробуем сделать выводы о возможных вариантах добровольного обмена. Следовательно, Андрей и Борис могут увеличить свою полезность, обменявшись некоторым количеством благ, и эта возможность улучшить свое положение побудит их вступить в обмен добровольно. Какими могут быть условия этого добровольного обмена?
Мы можем определить множество возможных вариантов обмена исходя из предположения, что ни один из индивидов не станет заключать сделки, если его положение ухудшится. Предположим, что исходное размещение представлено точкой G, которая не является парето-эффективной (рис. 4). Выбирая вариант обмена, Андрей не согласится на уровень полезности ниже UAA, а Борис не согласится на уровень полезности ниже UCB. Отсюда следует, что сделка будет заключена только в том случае, если новое состояние окажется где-то внутри области, заключенной между кривыми безразличия UAA и UCB.
Рис. 4. Эффективность в обмене и исходная неэффективная аллокация.
Обсуждая условия сделки, Андрей и Борис могут найти парето-эффективное состояние, если выберут точку на участке АС, принадлежащем контрактной кривой. Но какую именно точку они должны будут выбрать, определить невозможно. Все точки на участке АС представляют собой состояния, после достижения которых дальнейшее добровольное перезаключение сделок невозможно, так как один из индивидов будет что-то при этом терять. Андрей будет стремиться к тому, чтобы эта точка была поближе к точке С, Борис будет стремиться к тому, чтобы эта точка была поближе к точке А. Результат этого "перетягивания каната" не будет определен до тех пор, пока не будут сделаны какие-то дополнительные предположения о поведении индивидов.
Заметим, что этот анализ по сути дела аналогичен анализу двусторонней монополии, которая также не имеет единственно возможного равновесия, а имеет только диапазон возможных цен сделки.
Однако анализ экономики обмена с двумя индивидами и двумя благами представляет собой лишь иллюстрацию на частном примере основных понятий экономики обмена. В дальнейшем, при анализе экономики с использованием механизма цен, мы убедимся в единственности равновесия, и этот вывод можно будет распространить на произвольное число субъектов.
-
-
2.1.2 Эффективность в производстве
Парето-эффективоность в производстве означает, что нельзя увеличить выпуск одного блага без того, чтобы в результате не сократился выпуск какого-либо другого блага.
Предположим, что фирма использует два вида ограниченных ресурсов (капитал - K и труд - L) для выпуска двух разных благ (Х и Y). Вариант производства парето-эффективен, если невозможно перегруппировать ресурсы таким образом, чтобы увеличить выпуск блага Х без сокращения выпуска Y.
Для этого необходимо выполнение условия
где MRTSXLK - предельная норма технической замены трудом капитала в производстве блага X, а MRTSYLK - предельная норма технической замены трудом капитала в производстве блага Y.
Пусть фирма располагает 100 чел.-ч и 100 маш.-ч, которые она может распределить между производством пылесосов (X) и холодильников (Y). Допустим, фирма решила половину из каждого ресурса направить на производство пылесосов, а другую половину - на производство холодильников. Предельные нормы технической замены для этих продуктов будут при этом различаться: в производстве пылесосов MRTSXLK = 2, а в производстве холодильников MRTSYLK = 1. Легко показать, что при таких значениях MRTS размещение ресурсов парето-неэффективно. Если мы заберем 1 чел.-ч из производства холодильников и пустим его на производство пылесосов, то из производства пылесосов мы сможем забрать 2 маш.-ч без уменьшения выпуска последних. Из этих 2 маш.-ч один нам нужно будет "вернуть" в производство холодильников, чтобы компенсировать изъятие 1 чел.-ч, а 1 маш.-ч остается "лишним" и может быть использован для увеличения производства одного из благ без уменьшения производства другого. Таким образом, нераспределение ресурсов приводит к парето-улучшению.
Попытаемся проиллюстрировать вышесказанное с помощью рис. 5, на котором изображена коробка Эджуорта для производства. Вертикальная сторона показывает общее количество доступного фирме капитала, горизонтальная сторона - труда. Точка OX является началом координат для карты изоквант, показывающих различные уровни выпуска блага Х, которые могут быть произведены с использованием различных комбинаций ресурсов K и L. Точка OY является началом координат для карты изоквант блага Y.
Рис. 5. Эффективные размещения ресурсов внутри одной фирмы.
Любая точка в коробке представляет размещение обоих ресурсов между производством Х и Y. Местоположение парето-эффективных способов размещения K и L представлено точками (P1,...,P4) касания изоквант производства X (X1,...,X4) и изоквант производства Y (Y4,...,Y1). Множество всех таких точек касания образует линию OXOY, аналогичную контрактной кривой. Во всех точках линии OXOY предельные нормы замены для обоих продуктов равны.
В соответствии с условием эффективности в производстве:
Задача заключается в том, чтобы максимизировать количество блага Х при данном уровне выпуска блага Y, скажем, и располагаемом количестве капитала и труда (K и L). Нижние индексы X и Y указывают продукцию, на производство которой направлен соответствующий ресурс. Таким образом, имеются ресурсные ограничения:
производственные функции:
и цель максимизировать при ограничении:
Cоставляем функцию Лагранжа:
Дифференцируем по KX и LX и приравниваем к нулю:
так что
и в итоге имеем
Точки вне линии OXOY (например, точка А) парето-неэффективны. Переместившись из точки А на линию OXOY (например, в точку P2), фирма может произвести больше и блага X, и блага Y.















