179226 (628139), страница 3

Файл №628139 179226 (Средние величины) 3 страница179226 (628139) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Пример:

Таблица 2.1.2

Табельный номер рабочего

1

2

3

4

5

6

Часовая выработка деталей (x)

12

10

6

10

12

10

В примере, основанном на данных табл. 2.1.2, , а

При а =12 составит:

Таблица 2.1.3

xi

- a

12

-12

0

0

10

-12

-2

4

6

-12

-6

36

10

-12

-2

4

12

-12

0

0

10

-12

-2

4

Итого

48

Как видим, 24<48.

  1. Если все частоты разделить (или умножить) на произвольное число (а), то средняя от этого не изменится, так как

Если разгруппировать рабочих (табл.2.1.2) по числу выработанных за час деталей, получим такие данные (табл.2.1.4):

Таблица 2.1.4

Варианты выработки деталей за час (x)

Число рабочих с данной выработки (f)

Объем варьирующего признака (xf)

6

1

6

10

3

30

12

2

24

Итого

6

60

Если применить полученную формулу, к примеру, приведенному в табл. 2.1.4, это означает, что если, например, частоты уменьшить в 6 раз, средняя взвешенная арифметическая не изменится и будет равна:

Средняя не изменится, если мы частности выразим в процентах, т. е. умножим их на 100:

Рассматриваемое свойство показывает, что при данных вариантах признака величина средней зависит не от абсолютного размера весов, а от соотношения между ними. В приведенном примере мы сначала частоты уменьшили в 6 раз, а затем увеличили в 100 раз, но средняя выработка не изменилась.

  1. Если веса всех вариантов равны между собой, то взвешенная средняя равна простой средней, так как при этих условиях

Так как исчисление простой арифметической средней требует меньше затрат труда, чем взвешенной, то при равенстве весов нет надобности пользоваться последней.

  1. Средняя алгебраической суммы равна алгебраической сумме средних. Так, если у, х и z — положительные варьирующие величины и уi =xi +zi , то

.

Следовательно, .

Это свойство средней показывает, в каких случаях можно непосредственно суммировать средние. Например, если изделие состоит из двух деталей, изготовляемых разными рабочими, и при этом один из них тратит в среднем на одну деталь 20, а на другую 30 минут, то в среднем на одно изделие расходуется 20 + 30 = 50 минут. Аналогично решался бы вопрос, если бы изделие состояло из трех и более деталей.

2.1.2 Средняя гармоническая величина

Если по условиям задачи необходимо, чтобы неизменной оставалась при осреднении сумма величин, обратных индивидуальным значениям признака, то средняя величина является гармонической средней.

Средняя гармоническая величина, как и средняя арифметическая может быть простой и взвешенной. Если веса у каждого значения признака равны, то можно использовать среднюю гармоническую простую:

.

Однако в статистической практике чаще применяется средняя гармоническая взвешенная:

, где m = xf ,

она используется, как правило, при расчете общей средней из средних групповых.

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Приведем расчет средней гармонической величины — простой и взвешенной.

Пример. Четыре швеи-надомницы заняты пошивом головных уборов одной модели. Первая швея тратит на изготовление одного головного убора 30 мин, вторая — 40 мин, третья — 50 мин, четвертая — 60 мин. Определим средние затраты времени на пошив одного головного убора при условии, что каждая швея работает по 10 ч в день.

Попытка решить задачу с помощью средней арифметической простой

оказалась бы успешной, если бы каждая надомница шила только по одному головному убору в день. В данном же случае средние затраты времени на пошив одного головного убора можно подсчитать делением общих затрат времени на пошив всех головных уборов (600 + 600 + 600 + 600 = 2400 мин) на количество сшитых головных уборов.

Количество головных уборов, сшитых каждой надомницей, равно:

1) 600/30 = 20 шт.; 2) 600/40 =15 шт.; 3) 600/50 = 12 шт.; 4) 600/60 = 10 шт. Всего 57 изделий.

Средние затраты времени вычислим по формуле средней гармонической взвешенной:

т.е. на пошив одного головного убора тратится в среднем 42 мин.

В качестве веса в этой задаче был принят показатель общих затрат времени на пошив всех головных уборов одной швеей.

Так как в этом примере общие затраты времени у всех надомниц одинаковы, то к аналогичному результату приводит и расчет по формуле средней гармонической простой:

.

2.1.3 Средняя геометрическая величина

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин, то следует применить геометрическую среднюю величину.

Ее формула такова:

, для простой.

, для взвешенной.

Основное применение геометрическая средняя находит при определении средних темпов роста. Пусть, например, в результате инфляции за первый год цена товара возросла в 2 раза к предыдущему году, а за второй год еще в 3 раза к уровню предыдущего года. Ясно, что за два года цена выросла в 6 раз. Каков средний темп роста цены за год? Арифметическая средняя здесь непригодна, ибо если за год цены возросли бы в раза, то за два года цена возросла бы в

2,5 х 2,5 = 6,25 раза, а не в 6 раз. Геометрическая средняя дает правильный ответ: √6 - 2,45 раза.

Геометрическая средняя величина дает наиболее правильный по содержанию результат осреднения, если задача состоит в нахождении такого значения признака, который качественно был бы равно удален как от максимального, так и от минимального значения признака. Например, если максимальный размер выигрыша в лотерее составляет миллион рублей, а минимальный - сто рублей, то какую величину выигрыша можно считать средней между миллионом и сотней? Арифметическая средняя явно непригодна, она составляет 500 050 руб., а это, как и миллион, крупный, а никак не средний выигрыш; он качественно однороден с максимальным и резко отличен от минимального. Не дают верного ответа ни квадратическая средняя (707 107 руб.), ни кубическая (793 699 руб.), ни гармоническая средняя (199,98 руб.), слишком близкая к минимальному значению. Только геометрическая средняя дает верный с точки зрения экономики и логики ответ: Десять тысяч — не миллион, и не сотня! Это, действительно, нечто среднее между ними.

Наиболее часто формулу средней геометрической используют для определения средних валютных курсов, эффективности валютных курсов,

реальной эффективности валютных курсов (международная финансовая статистика).

2.1.4 Средняя квадратическая величина

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной.

Ее формула такова:

, для простой.

, для взвешенной.

Например, имеются три участка земельной площади со сторонами квадрата: х1 = 100 м; х2 = 200 м; х3 = 300 м. Заменяя разные значения длины сторон на среднюю, мы очевидно, должны исходить из сохранения общей площади всех участков. Арифметическая средняя величина (100 + 200 + 300):3 = 200 м не удовлетворяет этому условию, так как общая площадь трех участков со стороной 200 м была бы равна: 3*(200 м)2 =120 000 м2. В то же время площадь исходных трех участков равна: (100 м)2 + (200 м)2 + (300 м)2 = 140 000 м2. Правильный ответ дает квадратическая средняя:

Формула средней квадратической используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения. Так, при расчете показателей вариации среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины.

2.1.5 Средняя кубическая величина

Если по условиям задачи необходимо сохранить неизменной сумму кубов индивидуальных значений признака при их замене на среднюю величину, мы приходим к средней кубической, имеющей вид:

, для простой.

, для взвешенной.

Средняя кубическая имеет ограниченное применение в практике статистики. Ею пользуются для исчисления средних диаметров труб, стволов и т.п., необходимых для разного рода расчетов, как, например, для определения запасов древесины на складах и на лесных участках.

2.2 Структурные средние величины

Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних применяют показатели моды и медианы.

Мода и медиана определяются лишь структурой распределения. Поэтому их именуют структурными позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

2.2.1 Медиана

Медиана (Ме) — величина варьирующего признака, делящая совокупность на две равные части — со значениями признака меньше медианы и со значениями признака больше медианы.

В ранжированном вариационном ряду с нечетным числом единиц совокупности медианой является значение признака у средней в ряду единицы. Медиана не зависит от значений признака, стоящих на краях вариационного ряда.

В интервальном вариационном ряду для нахождения медианы применяется формула:

,

где XMe - нижняя граница интервала, в котором находится медиана;

f´Me - число наблюдений (или объем взвешивающего признака), накопленное до начала медианного интервала;

fMe - число наблюдений или объем взвешивающего признака в медианном интервале (в абсолютном или относительном выражении);

i - величина медианного интервала;

- половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении).

Примером такого ряда может служить месячная заработная плата рабочих цеха.

Таблица 2.2.1

Порядковый номер рабочего

1

2

3

4

5

6

7

итого

Месячная заработная плата, руб. (x)

90

105

148

160

175

220

250

1148

В этом ряду среднее место по размеру заработной платы занимает рабочий с номером 4, получивший 160 руб. Эта величина и есть медиана. Меньше и больше медианы одинаковое число вариантов. При нечетном числе вариантов (п) порядковый номер, которому соответствует медиана, определяется по формуле

.

Когда количество вариантов в ряду четное число, медианой считают один из тех вариантов, который по своей величине мог бы находиться посередине между вариантами с номером и . Так, если бы в цехе был еще и восьмой рабочий с заработной платой в 276 руб., то медиана находилась бы посередине между четвертым и пятым порядковыми номерами. В таких случаях принято считать, что в промежутке между номерами и идет равномерное нарастание или убывание вариантов. Поэтому за медиану принимают среднюю арифметическую из вариантов с номерами и . В данном примере

Смысл полученного результата такой: одна половина рабочих получила за месяц меньше, а другая — больше 167,5 руб.

Следовательно, медиана — обобщающий показатель распределения совокупности, уровень признака, который делит совокупность на две равные части, и представляет обычно интерес в анализе, как это видно из приведенного примера.

Медиана, в отличие от средней, не является абстрактной величиной. Она находится точно в середине ряда, представляет собой реальное значение признака, соответствует определенному варианту и при этом наиболее точна в случае нечетного числа членов совокупности. Медиана как обобщающая характеристика совокупности не может, однако, заменить среднюю. Медиана — это центр распределения численности единиц совокупности, а средняя — центр распределения отклонений значений признака от равнодействующей. Величина медианы определяется лишь одним или двумя серединными значениями признака. Изменения всех остальных величин, если они не меняют последовательности членов в центре ряда, не находят отражения в медиане. Так, если месячную заработную плату наименее оплачиваемых двух рабочих поднять на 40 руб., это не скажется на медиане, несмотря на то, что тем самым значительно повышаются доходы двух рабочих цеха и существенно выравнивается заработная плата членов коллектива. Поэтому медиана, представляющая определенный интерес в анализе, не может заменить среднюю, которая при замене реального коллектива абстрактным коллективом с уравненными значениями признака оставляет неизменным определяющий показатель совокупности.

Медианой целесообразно пользоваться, когда не известны границы открытых крайних интервалов вариационного ряда, на которые приходится значительная часть единиц всей совокупности, так как средняя в этих случаях страдает значительной неточностью. При исчислении же медианы отсутствие сведений об этих границах не влияет на точность расчета.

2.2.2 Мода

Мода (Мо) - это вариант признака, который при данном сочетании причин разного порядка чаще всего встречается в вариационном ряду. Например, цена, по которой чаще всего реализуется данный товар на рынке, является модой или модальной ценой. Месячная заработная плата, которая чаще всего встречается в данном коллективе, является для него модальной заработной платой.

Мода - типичная величина, в том смысле, что она встречается в совокупности или объективно может встретиться чаще других. Она имеет важное значение для решения некоторых задач, например какой высоты должны быть предназначенные для массового потребления станки, столы и т. п., какое количество детей чаще всего встречается в семье, какое время дня является «пиковым» для работы предприятий общественного питания, электростанций, городского транспорта и др., какой уровень выполнения плана наиболее часто встречается в том или ином коллективе рабочих или предприятий и т. п.

Мода соответствует определенному значению признака. На практике моду находят, как правило, по сгруппированным данным.

В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой.

В интервальном вариационном ряду, тем более при непрерывной вариации признака, строго говоря, каждое значение признака встречается только один раз. Модальным интервалом является интервал с наибольшей частотой. Внутри этого интервала находят условное значение признака, вблизи которого плотность распределения, то есть число единиц совокупности, приходящееся на единицу измерения варьирующего признака, достигает максимума. Это условное значение и считается точечной модой. Логично предположить, что такая точечная мода располагается ближе к той из границ интервала, за которой частота в соседнем интервале больше частоты в интервале за другой границей модального интервала. Отсюда имеем обычно применяемую формулу:\

,

XMo - нижнее значение признака X в модальном интервале;

i - величина интервала;

fMo - частота (частость) повторения признака X в модальном интервале;

fMo-1 ,fMo+1 - соответственно частоты (частости) признака для интервала, предшествующего модальному и следующего за ним.

Пример: Таблица 2.2.2

Удойность в среднем от одной коровы за год, кг

Процент хозяйств

До 1000

7,6

1000-1649

9,7

1650-1999

16,1

2000-2499

37,5

2500-2999

20,6

3000-3999

8,2

4000 и выше

0,3

100

По табл.2.2.2. модальный интервал составляет 2000 - 2499шт, так как ему соответствует наибольшая частота 37,5%, нижняя его граница хо = 2000, а величина интервала h = 500. Следовательно,

Это значит, что чаще всего встречаются хозяйства, у которых надой в среднем от одной коровы составляет 2280 кг.

Для решения практических задач наибольший интерес представляет обычно мода, выраженная в виде интервала, а не дискретным числом. Объясняется это назначением моды, которая должна выявить наиболее распространенные размеры явления. Выраженная в виде дискретного числа мода часто не отвечает этому требованию. Так, в нашем примере процент хозяйств, у которых годовой надой в среднем на одну корову составляет 2280 кг, хотя и больше, чем хозяйств с любым другим уровнем надоя, но сам по себе он может быть небольшим. Хозяйств же с удойностью в пределах интервала 2000 - 2499 кг - 37,5%, а 2000 - 3000 кг - 58,1, - т. е. весьма значительный процент.

3. Основные методологические требования расчета средних величин

В связи с тем, что различные виды средних приводят к разным результатам, возникает проблема правильного выбора формы средней. Если форма выбрана неправильно, то средняя будет завышена либо занижена. Так как любая средняя рассчитана на отображение лишь одного какого-либо конкретного свойства совокупности, то, следовательно, ответ может быть только однозначным. Кроме того, каждая средняя имеет свой особый смысл и область применения.

Рассматривая вопрос о выборе формы средней, которая наилучшим образам отвечает требованиям, К. Джини пишет: «Для выбора такой средней можно наметить лишь общие нормы, решающую же роль здесь играет интуиция и искусство исследователя» 1. Как, однако, ни важны эти качества исследователя, как и общие соображения об особенностях различных средних и их назначении, решающим в выборе формы средней является социально-экономическое содержание явления, сущность которого должна найти свое количественное выражение в средней. Средняя должна, на основе обобщения количественной стороны массовых общественный явлений в неразрывной связи с их качественной стороной, дать ответ на конкретные вопросы, выдвигаемые жизнью. Поэтому для правильного решения вопроса о выборе формы средней необходимо прежде всего учесть сущность объекта, законы его развития, его специфику, определить задачу, которая должна решаться при помощи средней, и исходя из всего этого установить определяющий показатель, который должен найти отражение в средней. Таков первый этап в решении вопроса о форме средней.

Второй этап в выборе формы средней заключается в определении характера связи между определяющим свойством и осредняемым признаком. Если, например, связь прямо пропорциональна, то для расчета средней надо воспользоваться формулой средней арифметической, а при обратной пропорциональности — формулой средней гармонической. В случаях, когда связь выражается в форме геометрической прогрессии, средняя должна исчисляться по формуле средней геометрической и т. п.

Третий этап практически сводится к исчислению числовых значений средней по избранной формуле на основе фактических данных.

Из всех трех этапов наиболее сложным является первый. Недоучет некоторых обстоятельств на этом этапе или формальный подход, оторванный от качественного анализа, приводит нередко к тому, что разные авторы предлагают для решения одной и той же задачи разные виды средних.

Так как средние, включая и распределительные средние, привлекаются для получения типичных характеристик совокупности, то выбор формы средней для решения той или иной задачи зависит и от того, о какой типичности идет речь. Для характеристики однородности совокупности, устойчивости или изменчивости явлений и процессов следует привлекать среднее линейное отклонение, среднее квадратическое отклонение и коэффициент вариации. В тех случаях, когда для решения той или иной задачи важно знать размер признака, который чаще всего встречается в совокупности, надо пользоваться модой, а для того, чтобы установить границу между высшей и низшей группами величин, а также для решения некоторых оптимальных задач, — медианой. Так как различные виды средней по-разному характеризуют совокупность, то для всестороннего ее изучения надо сочетать различные виды средних величин.

Таковы научные основы выбора формы средней.

Заключение

Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая, средняя гармоническая, средняя кубическая.

В качестве структурных средних рассматриваются мода и медиана.

Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным. Взвешенная средняя считается по сгруппированным данным.

Общие формулы расчета степенных средних имеют показатель степени (m).

  • средняя гармоническая, если m = - 1;

  • средняя геометрическая, если m → 0;

  • средняя арифметическая, если m = 1;

  • средняя квадратическая, если m = 2;

  • средняя кубическая, если m = 3.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина.

Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым. Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины.

Использованная литература

  1. Теория статистики: Учебно – методический комплекс / Под ред. В.В. Глинского, В.Г. Ионина, Л.И. Яковенко. – Новосибирск: НГУЭУ, 2007. – 108 с.

  2. Общая теория статистики: Учебник / А.Я. Боярский, Л.Л. Викторова, А.М. Гольдберг и др.; Под ред. А.М. Гольдберга, В.С. Козлова. – М.: Финансы и статистика,1985. – 367 с.

  3. Громыко Л.Г.Общая теория статистики: Практикум. – М.: ИНФРА – М,1999. – 139 с.

  4. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник / Под ред. чл.-корр. РАН И.И.Елисеевой. – М.: Финансы и статистика, 1996. – 368 с.: ил.

  5. Пасхавер И.С. Средние величины в статистике. – М.: Статистика, 1979. – 279 с., ил.

  6. Практикум по теории статистики: Учеб. пособие / Под ред. Р.А. Шмойловой. – М.; Финансы и статистика, 2001. – 416 с.: ил.

  7. Статистика: учебник / Л.П. Харченко, В.Г. Ионин, В.В. Глинский и др.; под ред. канд. экон. наук, проф. В.Г. Ионина. – 3-е изд., перераб. и доп. – М.: ИНФРА-М, 2008. – 445 с. – (Высшее образование).

  8. Харченко Л.П. История статистики. Развитие методологии статистической науки: Учебное пособие. – НГУЭУ, 2005. – 144 с.

Расчетная часть

Задача 1.

Один рабочий тратит на изготовление детали 2 минуты, второй 6 минут.

Определить:

1. Средние затраты времени на изготовление 1 детали (минут).

2. Количество деталей, изготовленных за первые 2 часа рабочего дня.

3. Общие трудозатраты и время, необходимое на изготовление первой партии из 100 деталей.

Решение:

1. Средние затраты времени на изготовление одной детали (минут) определяем по формуле средней арифметической простой:

=

2. Количество деталей, изготовленных за первые 2 часа рабочего дня:

а) 60 мин.* 2 часа =120 мин.;

б) Q = , где Q – количество деталей;

T – общие затраты рабочего времени;

t – уровень трудоемкости.

120 мин./ 2 мин. = 60 деталей;

120 мин. / 6 мин. = 20 деталей;

г) 60 + 20 = 80 деталей.

3. Общие трудозатраты и время, необходимое на изготовление первой партии из 100 деталей:

,

Где - средняя трудоемкость изготовления изделия одного и того же вида несколькими рабочими; ti – трудоемкость изготовления единицы продукции конкретным рабочим; dTi – доля рабочего в общих затратах рабочего времени.

dT1 = dT2 = 0,5 ч.

t1 = 0,02 ч, t2 = 0,06 ч.

T= *Q

Где Т – трудозатраты; - средняя трудоемкость изготовления изделия одного и того же вида несколькими рабочими; Q – общее количество выработанной продукции.

Т = 0,03*100 = 3 ч.

Ответ:

1. Средние затраты времени на изготовление 1 детали = 4мин.

2. Количество деталей, изготовленных за первые 2 часа рабочего дня = 80.

3. Общие трудозатраты и время, необходимое на изготовление первой партии из 100 деталей = 3ч.

Задача 2.

По сельскохозяйственному предприятию имеются следующие данные о валовом сборе зерновых культур:

Год

Валовой сбор, тонн

1990

162

1991

178

1992

180

1993

183

1994

185

1995

184

1996

187

1997

190

1998

192

1999

196

2000

199

1) Построить уравнение общей тенденции валового сбора в форме линейного тренда методами:

а) первых разностей (абсолютных цепных приростов);

б) методом серий;

в) аналитического выравнивания методов наименьших квадратов.

2) Оценить ожидаемую величину валового сбора на 2002–2003 годы.

3) Отразить на графике фактический валовой сбор зерновых, его основную тенденцию и ожидаемое значение на ближайшую перспективу.

Решение:

Год

Валовый сбор, тонн, y

t

t2

ty

<Me = A, >Me =B

1990

162

-5

25

-810

-

А

1991

178

-4

16

-712

16

А

1992

180

-3

9

-540

2

А

1993

183

-2

4

-366

3

А

1994

185

-1

1

-185

2

В

1995

184

0

0

0

-1

А

1996

187

1

1

187

3

В

1997

190

2

4

380

3

В

1998

192

3

9

576

2

В

1999

196

4

16

784

4

В

2000

199

5

25

995

3

В

Итого

2036

-

110

309

а) Абсолютный цепной прирост:

б) Ме =

R = 4,

,

.

,

t=2, при P = 0,954

6-2*1,58 ≤ R ≤ 6+2*1,58

2,84 ≤ R ≤ 9,16

Число серий R = 4 укладывается в пределах случайного поведения , и гипотеза о наличии обшей закономерности снижения или возрастания во времени не может быть принята(с вероятностью ошибки 0,046).

в)

,

где y – исходный уровень ряда динамики,

n – число членов ряда,

t – показатель времени.

Если ,

то , , .

,

.

Уравнение примет вид: .

2) Для 2002 года t =7, для 2003 года t =8, следовательно, ожидаемая величина валового сбора зерновых культур:

в 2002 году составит 185,09+2,81*7=204,76;

в 2003 году составит 185,09+2,81*8=207,57.

3)

Наблюдается тенденция увеличения валового сбора зерновых.

Задача 3.

В результате 5% механической выборки в отделении банка получено следующее распределение вкладов по срокам хранения:

Группы вкладов по сроку хранения, дней

Количество вкладов

До 30

98

30 ÷ 60

140

60 ÷ 90

175

90 ÷ 180

105

180 ÷ 360

56

360 и более

26

Определить:

1) средний срок хранения вкладов по данным выборки;

2) долю вкладов со сроком хранения более 180 дней по данным выборки;

3) с вероятностью 0,954 пределы, в которых можно ожидать среднюю продолжительность хранения вклада и долю вкладов со сроком хранения более 180 дней в целом по отделению банка;

4) необходимый объем выборки при определении доли вкладов, чтобы с вероятностью 0,683 предельная ошибка не превысила 7% (0,07).

Решение:

Группы вкладов по сроку хранения, дней

Середина интервала,

x

Количество вкладов,

f

xf

До 30

22,5

98

2205

-85,775

7357,35

721020,3

30-60

45

140

6300

-63,275

4003,73

560522,2

60-90

75

175

13125

-33,275

1107,23

19376,25

90-180

135

105

14175

26,725

714,23

74994,15

180-360

270

56

15120

161,725

26154,98

1464678,88

360 и более

540

26

14040

431,275

185998,13

4835951,38

Итого

600

64965

-

-

7676543,16

  1. Средний срок хранения вкладов (дней):

  1. Доля вкладов со сроком хранения более 180 дней:

Рассчитаем предельную ошибку для средней продолжительности срока хранения вкладов:

При p = 0,954 , t = 2

- пределы, в которых можно ожидать среднюю продолжительность хранения вклада. Предельная ошибка для доли вкладов со сроком хранения более 180 дней:

Доля вкладов = 14%, p = 0,954 , t = 2

или 0,14%

- пределы для доли вкладов со сроком хранения более 180 дней.

  1. объем выборки при определении доли вкладов:

При p = 0,683 , t = 1

- необходимый объем выборки при определении доли вкладов

Задача 4.

Имеются данные о спросе на книжную продукцию и структуре оборота книжного издательства в отчетном году:

Стратегическая единица

Спрос на продукцию, тыс. экз.

Доля в общем обороте издательства, %

1.Классика

20

0

2.Детская литература

100

1,0

3.Зарубежный детектив

60

49,5

4.Российский детектив

120

20,5

5.Женский роман

90

6,8

6.Фантастика

50

0

7.Приключения

30

1,0

8.Специальная литература

110

14,3

9.Рекламная продукция

60

4,9

10.Прочая литература

80

2,0

Определите уровень согласованности между спросом на книжную продукцию и структурой оборота издательства с помощью коэффициентов корреляции Спирмена, Кендэла, Фехнера.

Решение:

Стратегическая единица

Ранг

Разность рангов

d= RX -RY

d2

Баллы для расчета коэффициента Кендэлла

Знак отклонения от среднего ранга по спросу на продукцию

Знак отклонения от среднего ранга по доли в общем обороте

Спрос на продукцию RX

Доля в общем обороте RY

Q

P

1 – классика

1

0,5

0,5

0,25

8

0

-

-

7-приключения

2

1,5

0,5

0,25

6

1

-

-

6- фантастика

3

0,5

2,5

6,25

7

0

-

-

3-зар.детектив

4,5

8

-3,5

12,25

0

6

-

+

9-рекл.продук.

4,5

4

0,5

0,25

3

2

-

-

10-проч.литер.

6

3

3

9

3

1

+

-

5-жен.роман

7

5

2

4

2

1

+

-

2-детс.литер.

8

1,5

6,5

42,25

2

0

+

-

8-спец.литер.

9

6

3

9

1

0

+

+

4-рос.детектив

10

7

3

9

0

0

+

+

Итого:

-

-

-

92,5

32

11

Совпадений знаков 6;

Несовпадений 4

    1. Корреляция Спирмена:

,

где d – разность между рангами взаимосвязанных признаков X и Y отдельных единиц совокупности;

n – число соответствующих пар значений X и Y;

; ,

где tXчисло одинаковых рангов по переменной X;

tY – число соответствующих рангов по переменной Y.

Расчетное значение статистики Стьюдента сравнивается с табличным при уровне значимости 0,05 и числе степеней свободы v = n – 2 = 10 – 2 = 8 равно 2,306.

2,306 > 1,906

2. Корреляция Кендэлла:

,

где

,

Q – число случаев, когда у последующих наблюдений ранг признака Y больше, чем у данного;

P - число случаев, когда у последующих наблюдений ранг признака Y меньше, чем у данного;

,

,

,

  1. Корреляция Фехнера:

,

где и - число совпадений и несовпадений.

Средний ранг равен 5,5.

Ответ: уровень согласованности между спросом на книжную продукцию и структурой оборота издательства с помощью коэффициентов корреляции Спирмена, Кендэла, Фехнера – слабая. Если , где - коэффициент корреляции - связь слабая.

Задача 5.

Имеются данные областного комитета государственной статистики об изменении цен в текущем году по сравнению с предшествующим годом:

Изменение цен, %

1. На платные услуги

+62,3

2. На продовольственные товары

+22,4

3. На непродовольственные товары

+20,1

1.Рассчитайте индекс потребительских цен, учитывая, что в текущем году сформировалась следующая структура потребления (структура потребительской корзины):

Платные услуги

41,0%

Продовольственные товары

31,8%

Непродовольственные товары

27,2%

2.Определите величину перерасхода средств населением в текущем году за счет роста цен, если известно, что в предыдущем году было реализовано:

Платных услуг

5627,7 млн. руб.

Продовольственных товаров

4364,9 млн. руб.

Непродовольственных товаров

3728,1 млн. руб.

Решение:

Изменение цен,%

ip*100%-100%

Реализация в текущем периоде,

p1q1

ip

Реализация в базисном году,

Платные услуги

+62,3

41%

1,623

0,253

5627,7млн.руб

9133,76

Продовольственные товары

+22,4

31,8%

1,234

0,258

4364,9млн.руб.

5386,29

Непродовольственные товары

+20,1

27,2%

1,201

0,226

3728,1млн.руб.

4488,63

итого

100%

0,737

13720,7млн.руб.

19008,68

1)

или 133,7%

Цены в текущем году возросли на 33,7%.

2) или 138,5%

Перерасход средств населения за счет роста цен составил 38,5%.

1 Джини К. Средние величины. М., Статистика, 1970. – С. 417.

Характеристики

Тип файла
Документ
Размер
2,17 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее