179225 (628138), страница 3

Файл №628138 179225 (Средние велиичины в экономическом анализе) 3 страница179225 (628138) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

где x1,x2,…xn- значения признака, n- их число.

Средняя кубическая взвешенная:

,

где f-веса.

Средние квадратическая и кубическая имеют ограниченное применение в практике статистики. Широко пользуется статистика средней квадратической, но не из самих вариантов x, и из их отклонений от средней (х — ) при расчете показателей вариации.

Средняя может быть вычислена не для всех, а для какой-либо части единиц совокупности. Примером такой средней может быть средняя прогрессивная как одна из частных средних, вычисляемая не для всех, а только для "лучших" (например, для показателей выше или ниже сред- них индивидуальных).


Структурные средние.

Для характеристики структуры вариационных рядов применяются так называемые структурные средние. Наиболее часто используются в экономической практике мода и медиана.

Мода – значение случайной величины встречающейся с наибольшей вероятностью. В дискретном вариационном ряду это вариант имеющий наибольшую частоту.

В дискретных вариационных рядах мода определяется по наибольшей частоте. Предположим товар А реализуют в городе 9 фирм по цене в рублях:

44; 43; 44; 45; 43; 46; 42; 46;43;

Так как чаще всего встречается цена 43 рубля, то она и будет модальной.

В интервальных вариационных рядах моду определяют приближенно по формуле

,

где - начальное значение интервала, содержащего моду;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

- частота интервала, следующего за модальным.

Место нахождения модального интервала определяют по наибольшей частоте (таблица 4)

Распределение предприятий по численности промышленно - производственного персонала характеризуется следующими данными:

Таблица 4

Группы предприятий по числу работающих, чел

Число предприятий

100 — 200

1

200 — 300

3

300 — 400

7

400 — 500

30

500 — 600

19

600 — 700

15

700 — 800

5

ИТОГО

80

В этой задаче наибольшее число предприятий (30) имеет численность работающих от 400 до 500 человек. Следовательно, этот интервал является модальным интервалом ряда распределения.

Введем следующие обозначения:

=400, =100, =30, =7, =19

Подставим эти значения в формулу моды и произведем вычисления:

Мода применяется для решения некоторых практических задач. Так, например, при изучении товарооборота рынка берется модальная цена, для изучения спроса на обувь, одежду используют модальные размеры обуви и одежды и др.

Медиана - это численное значение признака у той единицы совокупности, которая находится в середине ранжированного ряда (построенного в порядке возрастания, либо убывания значения изучаемого признака). Медиану иногда называют серединной вариантой, т.к. она делит совокупность на две равные части.

В дискретных вариационных рядах с нечетным числом единиц совокупности - это конкретное численное значение в середине ряда. Так в группе студентов из 27 человек медианным будет рост у 14-го, если они выстроятся по росту. Если число единиц совокупности четное, то медианой будет средняя арифметическая из значений признака у двух средних членов ряда. Так, если в группе 26 человек, то медианным будет рост средний 13-го и 14-го студентов.

В интервальных вариационных рядах медиана определяется по формуле:

, где

x0 - нижняя гранича медианного интервала;

iMe - величина медианного интервала;

Sme-1 - сумма накопленных частот до медианного интервала;

fMe - частота медианного интервала.

Распределение предприятий по численности промышленно - производственного персонала характеризуется следующими данными:

Таблица 5

Группы предприятий по числу рабочих, чел.

Число предприятий

Сумма накопительных частот

100 — 200

1

1

200 — 300

3

4 (1+3)

300 — 400

7

11 (4+7)

400 — 500

30

41 (11+30)

500 — 600

19

600 — 700

15

700 — 800

5

ИТОГО

80

Определим прежде всего медианный интервал. В данной задаче сумма накопленных частот, превышающая половину всех значений (41), соответствует интервалу 400 - 500. Это и есть медианный интервал, в котором находится медиана. Определим ее значение по приведенной выше формуле.

Известно, что:

Следовательно,

.

Cоотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. Если M0 имеет место правосторонняя асимметрия. Если же 0 - левосторонняя асимметрия ряда. По приведенному примеру можно сделать заключение, что наиболее распространенная численность рабочих является порядка 467,6 чел. В то же время более половины предприятий имеют численность рабочих более 496,6 чел., при среднем уровне 510 чел. чел. Из соотношения этих показателей следует сделать вывод о правосторонней асимметрии распределения предприятий по численности промышленно - производственного персонала.

Мода и медиана в отличие от степенных средних являются конкретными характеристиками, их значение имеет какой-либо конкретный вариант в вариационном ряду.

Мода и медиана, как правило, отличаются от значения средней, совпадая с ней только в случае симметричного распределения частот вариационного ряда. Поэтому соотношение моды, медианы и средней арифметической позволяет оценить ассиметрию ряда распределения.

Мода и медиана, как правило, являются дополнительными к средней характеристиками совокупности и используются в математической статистике для анализа формы рядов распределения.

Аналогично медиане вычисляются значения признака, делящие совокупность на четыре равные (по числу единиц) части — квартели, на пять равных частей — квинтели, на десять частей — децели, на сто частей — перцентели.

Расчетная часть

Задание:

1. Определите, по первичным данным таблицы №7(в методическом указании №5.2) среднегодовую стоимость основных производственных фондов в расчете на одно предприятие.

2. Постройте статистический ряд распределения предприятий по среднегодовой стоимости основных производственных фондов, образовав четыре группы предприятий с равными интервалами, охарактеризовав их числом предприятий и их удельным весом.

По ряду распределения (п.2) рассчитайте среднегодовую стоимость основных производственных фондов, взвешивая варианты признака:

а) по числу предприятий;

б) по удельному весу предприятий.

Сравните полученную среднюю с п.1, поясните их расхождение.

3. Имеются данные о финансовых показателях предприятий фирмы за отчетный период (таблица №6):

Таблица 6

Предприятия

Получено прибыли, тыс.руб.

Акционерный капитал, тыс.руб.

Рентабельность акционерного капитала, %

Удельный вес акционерного капитала в общем объеме, %

A

1

2

3

4

1

1512

5040

30

42

2

528

1320

40

11

3

1410

5640

25

47

Определите средний процент рентабельности акционерного капитала фирмы, используя показатели:

а) гр.1 и гр. 2; в) гр.1 и гр.3;

б) гр.2 и гр. 3; г) гр.3 и гр.4.

Таблица 7

п/п

Среднегодовая стоимость основных производственных фондов, млн. руб.

Выпуск продукции, млн. руб.

А

1

2

1

27

21

2

46

27

3

33

41

4

35

30

5

41

47

6

42

42

7

53

34

8

55

57

9

60

46

10

46

48

11

39

45

12

45

43

13

57

48

14

56

60

15

36

35

16

47

40

17

20

24

18

29

36

19

26

19

20

49

39

21

38

35

22

37

34

23

56

61

24

49

50

25

37

38

26

33

30

27

55

51

28

44

46

29

41

38

30

28

35

Решение:

1. Для определения среднегодовой стоимости основных производственных фондов в расчете на одно предприятие воспользуемся формулой средней арифметической простой (т.к. имеются индивидуальные несгруппированные значения признака),

где x1,x2,…xn - среднегодовая стоимость основных производственных фондов; n – число предприятий.

=42 (млн.руб.),

где x1=27,x2=46,…x30=28 - среднегодовая стоимость основных производственных фондов; n =30 – число предприятий.

Среднегодовая стоимость основных производственных фондов в расчете на одно предприятие равна 42 млн.руб.

2. Для построения статистического ряда распределения предприятий по среднегодовой стоимости основных производственных фондов с выделением 4 групп найдем величину равного интервала:

Величина равного интервала определяется по формуле:

,

где xmax и xmin – максимальное и минимальное значение признака, n – число групп.

где xmax=60, xmin=20 - максимальное и минимальное значение среднегодовой стоимости основных производственных фондов (млн. руб.)

n=4 – группы предприятий.

Путем прибавления величины интервала к минимальному значению признака в группе получим следующие группы предприятий по значению среднегодовой стоимости основных производственных фондов (табл. 8)

Таблица 8

Ряд распределения предприятий по среднегодовой стоимости основных производственных фондов

№ группы

Группы предприятий по среднегодовой стоимости основных производственных фондов, млн.руб.

число предприятий

удельный вес

центр интервала

x

f

x`

1

20-30

5

0,167

25

2

30-40

8

0,267

35

3

40-50

10

0,333

45

4

50-60

7

0,233

30

Всего

30

1

а) По ряду распределения рассчитаем среднегодовую стоимость основных производственных фондов, взвешивая варианты признака по числу предприятий (табл. 9):

Таблица 9

Ряд распределения предприятий по среднегодовой стоимости основных производственных фондов

№ группы

Группы предприятий по среднегодовой стоимости основных производственных фондов, млн.руб.

число предприятий

центр интервала

X

f

x`

x`f

1

20-30

5

25

125

2

30-40

8

35

280

3

40-50

10

45

450

4

50-60

7

30

385

Всего

30

1240

Воспользуемся формулой средней арифметической взвешенной, выразим варианты одним (дискретным) числом, которое найдем как среднюю арифметическую простую из верхнего и нижнего значений интервала (центр интервала – x`).

; где - сумма произведений среднегодовой стоимости основных производственных фондов предприятий на их количество, - общее число предприятий.

= млн.руб.

Среднегодовая стоимость основных производственных фондов, взвешивая варианты признака по числу предприятий равна: 41,33 млн.руб.

б) По ряду распределения рассчитаем среднегодовую стоимость основных производственных фондов, взвешивая варианты признака по удельному весу предприятий (табл.10):

Таблица 10

Ряд распределения предприятий по среднегодовой стоимости основных производственных фондов

№ группы

Группы предприятий по среднегодовой стоимости основных производственных фондов, млн.руб.

число предприятий

удельный вес

центр интервала

x

F

d

x`

x`d

1

20-30

5

0,167

25

4,17

2

30-40

8

0,267

35

9,33

3

40-50

10

0,333

45

15,00

4

50-60

7

0,233

30

12,83

Всего

30

1

41,33

Воспользуемся формулой средней арифметической взвешенной, в качестве весов используем относительную величину (d) (удельный вес):

; где - сумма произведений среднегодовой стоимости основных производственных фондов предприятий на их удельный вес, =1.

4,17+9,33+15+12,83 = 41,33 млн.руб.

Среднегодовая стоимость основных производственных фондов, взвешивая варианты признака по удельному весу предприятий равна: 41,33 млн.руб.

При сравнении полученных в п.2 результатов средней с результатом, полученным в п.1 обнаруживаем небольшое расхождение, которое объясняется тем что в первом случае расчет проводился по формуле средней арифметической простой в расчете на одно предприятие, а во втором случае по формуле средней арифметической взвешенной по ряду распределения предприятий по среднегодовой стоимости основных производственных фондов с выделением четырех групп (интервалов). Для вычислений мы использовали средние значения в интервале (простая средняя между верхней и нижней границами каждого интервала). При таком исчислении средней допускается некоторая неточность, поскольку делается предположение о равномерности распределения единиц признака внутри группы.

3.

Таблица 11

Предприятия

Получено прибыли, тыс.руб.

Акционерный капитал, тыс.руб.

Рентабельность акционерного капитала, %

Удельный вес акционерного капитала в общем объеме, %

М=xf

F

x

1

1512

5040

30

42

2

528

1320

40

11

3

1410

5640

25

47

а) Расчет будем производить по формуле средней арифметической взвешенной (табл.11) т.к. дано значение общего объема (М=xf), и частота (f),но нет сведений о значениях признака (вариант) (x).

,где - общая прибыль, - общий акционерный капитал.

Средний процент рентабельности акционерного капитала фирмы равен 28,7%.

б) Расчет будем производить по формуле средней арифметической взвешенной (табл.11) т.к. даны единичные значения признака (вариант) (x) и частота(f).

,где - сумма произведений акционерного капитала на его процент рентабельности, - общий акционерный капитал.

Средний процент рентабельности акционерного капитала фирмы равен 28,7%.

в) Расчет будем производить по формуле средней гармонической взвешенной (табл.11) т.к. дано значение общего объема (М=xf), но нет сведений о частотах (f). , т.е. Акционерный капитал = .

, где - общая прибыль, - общий акционерный капитал.

0,287 (28,7%)

Средний процент рентабельности акционерного капитала фирмы равен 28,7%.

г) Расчет будем производить по формуле средней арифметической взвешенной (таблица№11) т.к. даны единичные значения признака (вариант) (x) и относительная величина – удельный вес (d). , где - доля каждой частоты в общей сумме всех частот, (проценты заменим коэффициентами).

Средний процент рентабельности акционерного капитала фирмы равен 28,7%.

При вычислении среднего процента рентабельности акционерного капитала фирмы, используя различные показатели, получаем один результат, что подтверждает правильность решения.

Аналитическая часть.

В данной части курсовой работы проведены аналитические исследования в области дифференциации заработной платы с использованием средних величин, на примере Республики Коми. Все используемые данные взяты за 2001г. В ходе исследования использовались такие программные продукты, как MS Word и MS Excel.

На начало 2001 г. в республике насчитывалось 2,7 тыс. крупных и средних предприятий, представивших данные о заработной плате, которая в январе в среднем составила 4,6 тыс. рублей. На этих предприятиях работало 375 тыс. человек, или три четверти занятого населения, или половина трудоспособного населения.

Данные статистических наблюдений сообщают информацию только о средней по предприятию заработной плате. Однако если взвесить среднюю заработную плату на численность работающих, то есть условно распространить среднюю зарплату по предприятию на каждого, работающего на этом предприятии, то можно проследить дифференциацию оплаты труда по предприятиям.

Оценить общую картину распределения значений заработной платы позволяет гистограмма (рис.1). Весь диапазон значений заработной платы от минимума до максимума делится на равные интервалы. Столбики представляют списочную численность работников с определенным значением заработной платы в данном интервале. Вдоль столбиков расположена кривая нормального распределения, имеющая длинный правый «хвост», что свидетельствует о неравномерном распределении показателя.

Рисунок 1. Встречаемость значений заработной платы

То есть небольшая численность работающих имеет довольно высокий (по сравнению с основной массой) уровень зарплаты, который распределился следующим образом:

Таблица 12. Распределение работающих по уровню заработной платы

Численность работающих, (человек)

В % к общей численности работающих

Кумулятивный (накапливаемый процент)

Всего работающих:

374603

100,0

В том числе с уровнем средней заработной платы на предприятии рублей:

до 1000

14758

3,9

3,9

1000-2000

90601

24,2

28,1

2000-3000

79002

21,1

49,2

3000-4000

41836

11,2

60,4

4000-5000

30869

8,2

68,6

5000-6000

25569

6,8

75,4

6000-8000

40199

10,7

86,1

8000-10000

23041

6,2

92,3

10000-14000

15558

4,2

96,5

Свыше 14000

13170

3,5

100,0

На рис. 2 приводится распределение работающих по уровню заработной платы в городах и районах (показатели ранжированного ряда).

Рисунок 2. Распределение работающих по уровню заработной платы

Условные обозначения:

  1. г. Сыктывкар

  2. г. Воркута

  3. г. Вуктыл

  4. г. Инта

  5. г. Печора

  6. г. Сосногорск

  7. г. Усинск

  8. г. Ухта

  9. Ижемский р-н

  10. Княжногостский р-н

  11. Койгородский р-н

  12. Корткеросский р-н

  13. Прилузский р-н

  14. Сыктывкарский р-н

  15. Сысольский р-н

  16. Троицко-печорский р-н

  17. Удорский р-н

  18. Усть-Вымский р-н

  19. Усть-Куломский р-н

Усть-Цилемский р-н

.Граница, отделяющая нижнюю заштрихованную область - 25-й процентиль. Заработная плата четверти самых низкооплачиваемых работающих не превышает эту величину (в среднем по предприятиям - 1,9 тыс. рублей). Выше расположена медиана (в среднем - 3,1 тыс. рублей). Половина работников получает зарплату в пределах этой суммы. Три четверти работающих имеет зарплату, не превышающую величину 75-ro процентиля (в среднем по предприятиям он равен 5,9 тыс. рублей). В пределах верхней границы (в среднем по предприятиям- 12,2 тыс. рублей) получает заработную плату большинство работающих, за ней начинаются экстремальные значения, не отображенные на данной диаграмме. Экстремально высокие значения зарплаты начисляются 5% работников. Наибольшие из экстремальных значений приводятся в таблице 13:

Таблица 13. Размах величины средней заработной платы на предприятиях городов и районов

Количество предприятий

Средняя заработная плата, рублей.

Минимум

Медиана

Максимум

Размах

Максимум к минимуму, раз

Города:

Сыктывкар

447

102

2768

78501

78501

771

Воркута

173

314

3125

17443

17129

56

Вуктыл

66

950

2544

19338

18388

20

Инта

117

403

2525

11200

10797

28

Печора

182

183

2227

21300

21117

116

Сосногорск

98

333

2588

12587

12253

38

Усинск

110

483

4447

26276

25792

54

Ухта

217

280

3143

19464

19184

70

Районы:

Ижемский

83

434

1936

7396

6962

17

Княжногостский

114

575

1814

10508

9933

18

Койгородский

66

317

2137

7500

7183

24

Корткеросский

124

293

1550

6311

6018

22

Прилузский

135

500

1640

6669

6169

13

Сыктывдинский

94

326

1823

12206

11880

37

Сысолский

96

320

1781

6600

6280

21

Троицко-Печорский

80

200

1953

6830

6630

34

Удорский

125

300

1767

11300

11000

38

Усть-Вымский

120

400

1817

9224

8824

23

Усть-Куломский

141

200

1694

7839

7639

39

Усть-Цилемский

94

262

1939

7065

6803

27

Размах между максимальными и минимальными значениями зарплаты чрезвычайно велик, особенно на предприятиях городов Сыктывкара, Печоры, Ухты, Воркуты, Усинска. Вместе с тем основная доля значений средней заработной платы довольно низкая (рис. 3):

Рисунок 3. Распределение предприятий по величине средней заработной платы по городам и районам.

Ящичковая диаграмма представляет ранжированный ряд значений заработной платы на предприятиях городов и районов. На всех ящичках значение медианы (жирная черта) смещено к низу, то есть ближе к минимальной величине заработной платы; в городах оно выше, чем в районах. Межквартильная широта (высота ящичка) показывает, насколько сильно различается уровень зарплаты у половины предприятий, находящихся в центре ранжированного ряда. Она несколько больше в городах (2-3 тыс.), ниже - в районах (1,2-2 тыс.). Экстремально высокие значения зарплаты на предприятиях городов начинаются с 6-10 тыс. рублей, районов - с 4-6 тыс.

Лишь города Усинск и Ухта выделяются большим разбросом значений средней зарплаты основной массы предприятий. Здесь больше межквартильная широта (соответственно 6,8 и 4,1 тыс. рублей) и выше граница экстремальных значений (с 19 и с 12 тыс.).

Величина средней заработной платы не превышала прожиточный минимум для трудоспособного населения (в среднем по республике он составил 1,9 тыс. рублей) более чем на трети предприятий, где была занята пятая часть работающих. Однако в большинстве районов эта доля была значительно выше (см. рис. 4):

Рисунок 4. Доля работающих со средней заработной платой меньше прожиточного минимума (в % к общей численности работающих в городе,районе)

Таким образом, наблюдается резкая дифференциация зарплаты в пределах городов и районов и между ними. Имеются экстремально высокие значения начисленной заработной платы, на порядок и более превышающие минимальные размеры заработной платы. При этом минимальные уровни зарплаты не представлены ни как выбросы, ни как экстремумы, то есть значения, явно отличающиеся от основной их массы. Напротив, основная доля работающих имеет довольно невысокий уровень зарплаты. Пятая часть из них получает заработную плату, не превышающую прожиточный минимум для трудоспособного населения, а в ряде районов - половина и более. Заработная плата половины работающих не превышает 3,1 тыс. рублей. Те, кто не относится ни к низко-, ни к высокооплачиваемым, получают в пределах 1,9-5,9 тыс. рублей. Меньшую, чем среднюю по республике заработную плату (4,6 тыс. рублей), имеют 66% работников.

Выявленные пропорции позволяют предположить, что уровень средней зарплаты несколько завышен, если оценивать основную массу работающих. Поэтому возникает необходимость применения альтернативных показателей, характеризующих среднее значение заработной платы.

Одним из них является медиана, величина которой приводилась выше (3,1 тыс. рублей).

Иногда для аналитических целей используется 5%-ное усеченное среднее. Оно вычисляется путем упорядочивания значений по возрастанию, отсечением (удалением) 5% значений от начала и от конца, а затем - вычислением обычного среднего для оставшихся значений. Как уже отмечалось, именно эта доля работающих на крупных и средних предприятиях получает зарплату с экстремально высокими значениями. То есть 5%-ное усеченное среднее - более корректный показатель. По республике он составил 4,1 тыс. рублей, что меньше средней зарплаты (4,6 тыс.), но больше медианы.

И все же традиционно в аналитической работе используется среднее. Поэтому актуальной становится задача корректного вычисления этого показателя, то есть с учетом того, что оценка среднего очень чувствительна к экстремальным значениям.

Вычисление среднего, сравнение групповых средних допустимо только для переменных с так называемым нормальным распределением. В существующей практике органами статистики среднее вычисляется без проверки характера распределения, хотя последнее может оказаться не похожим на нормальное. Это может привести к ошибочным выводам, особенно когда распределение значительно отклоняется от нормального. Плотность нормального распределения представляет симметричную кривую, в которой численности растут до максимума, а потом с такой же постепенностью убывают. Приведение данных к нормальному распределению заключается в преобразовании исходных данных - логарифмировании, возведении в степень, извлечении корня и т.п.

В нашем случае кривая нормального распределения несимметрична, имеет длинный «хвост», что видно на гистограмме (рис. 1). Для улучшения распределения показателя «заработная плата» использовалось возведение в степень. После этого было найдено среднее, 5%-ное усеченное среднее, медиана. Далее с ними были произведены вычисления, обратные проведенным преобразованиям. В результате были получены следующие значения:

Таблица 14. Показатели, характеризующие средний уровень заработной платы.

Заработная плата по республике, рублей

Среднее

5%-ное усеченное среднее

Медиана

До преобразования

4581

4044

3098

После преобразования

3349

3349

3097

После преобразований значение медианы практически не изменилось, значения среднего и 5%-ного усеченного среднего сравнялись и гораздо меньше стали отличаться от медианы.

Таким образом, средняя заработная плата по крупным и средним предприятиям республики составила 4,6 тыс. рублей, однако для основной доли этих предприятий среднее намного ниже - 3,3 тыс. рублей.

Итак, в республике наблюдается существенная дифференциация уровней заработной платы, что отражает процесс расслоения общества по величине доходов. Применяемое в статистической практике среднее, вычисляемое без проверки характера распределения данных, испытывает влияние экстремальных значений и может искажать явления, происходящие в обществе. Значимость этого вывода имеет особую важность для показателей, характеризующих уровень жизни.

Заключение

В заключении подведем итоги. Средние величины — это обобщающие показатели, в которых находят выражения действие общих условий, закономерность изучаемого явления. Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного или выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Применение средних должно исходить из диалектического понимания категорий общего и индивидуального, массового и единичного.

Средняя отражает то общее, что складывается в каждом отдельном, единичном объекте благодаря этому средняя получает большое значение для выявления закономерностей присущих массовым общественным явлениям и незаметных в единичных явлениях.

Отклонение индивидуального от общего — проявление процесса развития. В отдельных единичных случаях могут быть заложены элементы нового, передового. В этом случае именно конкретных фактор, взятые на фоне средних величин, характеризует процесс развития. Поэтому в средней и отражается характерный, типичный, реальный уровень изучаемых явлений. Характеристики этих уровней и их изменений во времени и в пространстве являются одной из главных задач средних величин. Так, через средние проявляется, например, свойственная предприятиям на определенном этапе экономического развития; изменение благосостояния населения находит свое отражение в средних показателях заработной платы, доходов семьи в целом и по отдельным социальным группам, уровня потребления продуктов, товаров и услуг.

Средний показатель — это значение типичное (обычное, нормальное, сложившееся в целом), но таковым оно является по тому, что формируется в нормальных, естественных условиях существования конкретного массового явления, рассматриваемого в целом. Средняя отображает объективное свойство явления. В действительности часто существует только отклоняющиеся явления, и средняя как явления может и не существовать, хотя понятие типичности явления и заимствуется из действительности. Средняя величина является отражения значения изучаемого признака и, следовательно, измеряется в той же размеренности что и этот признак. Однако существуют различные способы приближенного определения уровня распределения численности для сравнения сводных признаков, непосредственно не сравнимых между собой, например средняя численность населения по отношению к территории (средняя плотность населения). В зависимости от того, какой именно фактор нужно элиминировать, будет находиться и содержание средней.

Сочетание общих средних с групповыми средними дает возможность ограничить качественно однородные совокупности. Расчленяя массу объектов, составляющих то или иное сложное явления, на внутренне однородные, но качественно различные группы, характеризуя каждую из групп своей средней, можно вскрыть резервы процесс нарождающегося нового качества. Например, распределения населения по доходу позволяет выявить формирование новых социальных групп. В аналитической части мы рассмотрели частный пример использования средней величины. Подводя итог можно сказать, что область применения и использования средних величин в статистике довольно широка.

Список литературы:

  1. Бестужев-Лада И.В. Мир нашего завтра, М.: «Мысль», 1998

  2. Боярский А.Я., Громыко Г.Л. Общая теория статистики, М., 1995.

  3. Гусаров В.М. Теория статистики. – М., 1998.

  4. Российский статистический ежегодник. – М.:2002. – часть1

  5. http://www.infostat.ru

  6. http://www.vedi.ru.

1 Кетле А. Социальная физика или Опыт исследования о развитии человеческих способностей. Т. 1. Киев. – 1911. – С. 37.

Характеристики

Тип файла
Документ
Размер
1,27 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7002
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}