169113 (625267), страница 3
Текст из файла (страница 3)
Вид пыли - солодовенная;
Дисперсионность - d = 102*10-6м;
Характеристика фильтрованной перегородки:
Ткань – войлок иглопробивной ТУ 17-14-45-77;
Воздухопроницаемость - WПР = 3,2 м/мин;
Температура газа - tг = 1050С;
Рекомендуемая нагрузка - qР = 1,4 м3/(м2мин);
4.2 Определение удельной газовой нагрузки для рукавных фильтров
qР = qН *С1* С2* С3*С4*С5,
qН — нормативная удельная нагрузка, зависящая от вида пыли и ее склонности к агломерации, qН = 3,5 м3 /(м2*мин);
С1 — коэффициент, характеризующий особенность регенерации фильтровальных элементов, С1=0,55 – для фильтров с импульсной продувкой;
С2 — коэффициент, учитывающий влияние концентрации пыли на удельную газовую нагрузку (определяется по графику из справочника), С2=0,91;
С3 — коэффициент, учитывающий влияние дисперсного актива пыли в газе (определяется по справочнику), С3 =1,2;
С4 — коэффициент, учитывающий влияние температуры газа (определяется по справочнику), С4 =0,74;
С5 — коэффициент, учитывающий требования к качеству очистки, С5 =0,95.
qР = 3,5*0,55*0,91*1,2*0,74*0,95= 1,48 м3 /(м2*мин).
4.3 Определение поверхности фильтрования
FФ = (QОЧ + QОП) /60 qР + FР,
где QОЧ- объем газа, поступающего на очистку, QОЧ =1200 м3/ч;
QОП - объем газа или воздуха, расходуемого на обратную продувку, QОП=10 м3/ч;
FР - фильтрующая поверхность, отключаемая на регенерации в течение 1 ч.
Величина Fр не рассчитывается, т. к. дополнительная площадь фильтрующей поверхности, учитывающая регенерацию элементов, предусмотрена при расчете qр и F'ф
Тогда FФ = (QОЧ + QОП) /60*qР =(1200+10)/60*1,48= 13,6 м2.
По каталогу для приведенных условий выбираем фильтр с импульсной продувкой ФРКИ-30 с фактической поверхностью фильтрования 30 м2.
4.4 Определение числа рукавов
n = FФ / FЭ,
где FЭ - площадь поверхности одного рукава,
FЭ = dЭ lЭ ,
dЭ – диаметр рукава, выбираем по каталогу - dЭ = 135 мм;
lЭ – длина рукава, выбираем по каталогу - lЭ =2000 мм;
FЭ = 3,14*135*2000=847800 мм2= 0,85 м2.
n =30/0,85= 35,3
Полученное значение n округляют в сторону увеличения с учетом компоновки элементов в корпусе фильтра секциями.
n = 36 рукава.
4.5 Гидравлическое сопротивление тканевых фильтров
Гидравлическое сопротивление тканевых фильтров P является суммой сопротивления фильтровальной ткани P1 и сопротивления корпуса фильтра P2:
Р = Р1 + Р2,
Определим сопротивление фильтровальной ткани:
Р1 = Р'1 + Р1'',
где P1' постоянная величина, зависящая от типа ткани и ее толщины, Па;
P"1 переменная величина, зависящая от режима фильтрования, массы и свойств осевшей на ткань пыли, Па;
Определим величину P'1.
P'1 = Кфг qР
Кф коэффициент, характеризующий сопротивление фильтрующей перегородки (рукава), зависит от дисперсности пыли; Кф = 1,5*109 м-1 ,
г динамическая вязкость воздуха при рабочей температуре, Пас, выбирается по номограмме; г= 18,3*10-6 Па,
q’р удельная газовая нагрузка, м3/(м2с), принимается из расчетов, выполненных по формуле :
q’р = qР /60 = 1,48/60 = 0,025 м3/(м2с).
P'1 = 1,5*109 *18,3*10-6 * 0,025= 686Па
Определим величину Р1''
P"1 = (гСвхqр2 Кпс) / (2d502 г),
где время рабочего цикла фильтрации (между циклами регенерации), с; = 3600 / k; = 3600 /12= 300с
Свх концентрация пыли на входе в фильтр, Свх = 33 г/м3 ;
Кпс – коэффициент, характеризующий сопротивление пылевого слоя, Кпс= 2,76*109;
d50 медианный размер частиц пыли (м); d50= 102*10 -6м;
г плотность газа при рабочей температуре, кг/м3;г=1,626 кг/м3
q’р удельная газовая нагрузка, м3/(м2с).
P"1 = (18,3*10-6 *300*33*10-3*0,0252 *2,76*109)/(2*102*10 -12*1,626)=374Па
Р1=686+374=1060 Па
Определение сопротивления корпуса фильтра P2:
Р2 = VВХ 2 Г/2
где коэффициент гидравлического сопротивления при наиболее рациональных концентрациях корпусов, = 1,5 – 2, принимаем =2
VВХ скорость газа на входе в корпус, принимаем VВХ = 5м/с;
Р2 = 2*52 *1,626/2= 40 Па
Р = 1060 + 40,6=1100 Па.
Заключение
В процессе проведенных расчетов был выбран рукавный фильтр с импульсной продувкой ФРКИ-30.
Расчет фильтра сводился к определению суммарной площади поверхности фильтровального элемента, его гидравлического сопротивления и сопротивления корпуса фильтра.
Рукавные фильтры типа ФРКИ. фильтры типа ФРКИ — аппараты общепромышленного назначения. Они предназначены для улавливания пылей со средним диаметром частиц 2 мкм и более, не являющихся токсичными, пожаро- или взрывоопасными. Применяются в промышленности строительных материалов, черной и цветной металлургии, пищевой и химической промышленности.
В фильтре запыленный газ проходит через ткань закрытых снизу рукавов в направлении снаружи внутрь; чистый газ выходит через верхние открытые концы рукавов и удаляется из аппарата. Каждый рукав в фильтре натянут на жесткий каркас и закреплен на верхней решетке.
Регенерация осуществляется без отключения секций импульсами сжатого воздуха, поступающего внутрь рукавов сверху через отверстия в продувочных коллекторах
Преимущества установок газоочистки с рукавными фильтрами:
1. высокая степень пылеулавливания;
2. замена фильтровальных рукавов и элементов без прекращения эксплуатации;
3. пониженная чувствительность к эксплуатационным изменениям.
Использованная литература
-
Балашов В.Е. Оборудование предприятий по производству пива и безалкогольных напитков: Учебник для техникумов. – М.: Легкая и пищевая промышленность, 1984. – 248с.
-
Дубальская Э.Н. Очистка отходящих газов – М.,1991
-
Назаров Н. И. Технология и оборудование пищевых производств – М.: Пищевая промышленность, 1977
-
Справочник по производству алкогольных и безалкогольных напитков/ Балашов В.Е., Балантер И.И., Беленький С.М. – М.: Пищевая промышленность, 1979. – 367с.
-
Справочник по пыле- и золоулавливанию / Под общей редакцией Русанова А.А. – 2-е изд. – М.: Энергоатомиздат, 1983
-
Технология и оборудование производства пива и безалкогольных напитков: Учебник/ Г.А. Ермоаева, Р.А. Колчаева. – М.: ИРПО: Академия, 2000. – 416с.
-
Тимонин А.С. Инженерно-экологический справочник. Учебное пособие в 3х томах – Калуга: Изд-во Бочкаревой, 2003
24