166747 (625100), страница 2

Файл №625100 166747 (Биоразлагаемые полимерные материалы) 2 страница166747 (625100) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

В Институте биохимии им. А.Н. Баха РАН разработана схема биотехнологического производства одного из полигидроксиалканоатов — полигидроксибутирата (ПГБ) на основе штамма-продуцента Azotobacter chroococcum (Пат. 2194759 РФ, Пат. 2201453 РФ), способного синтезировать до 85 % полимера от сухого вещества клеток.

В качестве растворителей для экстракции воды из сырой биомассы по литературным и патентным данным предлагаются низкокипящие эфиры, кетоны, парафины, спирты алифатического или ароматического типов (Пат. 6043063 США). Обработку сырой биомассы, содержащей целевой продукт — ПГБ. проводят органическим растворителем, не растворяющим ПГБ. с целью его освобождения от воды, липидов (жирных кислот, стеринов), неорганических солей и других примесей. Отделение осадка — клеточной массы, содержащей ПГБ, проводится известными способами — фильтрацией или центрифугированием с последующим удалением растворителя сушкой.

С точки зрения экономической и технической доступности, незначительной летучести и достаточно низкой температуры очистки оборотного спирта на этой стадии очистки сырой биомассы был выбран изопропиловый спирт.

Очистку сухой биомассы, содержащей ПГА, проводили с использованием в качестве экстрагирующего растворителя галоидированных углеводородов: 1,2-дихлорэтан, хлороформ (ЕР 0015123); 1.1,2-трих-лорэтан; 1.1,2,2-терахлорэтан (ЕР 0015123, ЕР 0015669); метиленхлорид (Пат. 4310684 США). Применение метиленхлорида (температура кипения 40 — 41 °С) по сравнению с хлороформом (температура кипения 61 °С) вследствие его большей летучести приводит к увеличению потерь растворителя при перегонке или центрифугировании. Известно, что в качестве растворителей применяются метил- и этиллактаты (Заявка 4036067 ФРГ). Однако лактаты имеют температуру кипения 154 ºС, что требует применения высокой температуры для удаления растворителя. При этом возможен гидролиз ПГБ с уменьшением молекулярной массы, что нежелательно. Наибольший выход очищенного продукта получается при использовании хлороформа, поэтому при очистке сухой биомассы нами был выбран именно этот растворитель.

Сырая биомасса была изготовлена в Институте биохимии им. А.Н. Баха РАН на оборудовании ООО "Фирма "Макофарм" (г. Лотошино) и содержала 73 % полимера (в расчете на сухую биомассу), 0,52 % азота (1,73 % на сухой остаток). Очистку сырой биомассы, выделение и очистку ПГБ проводили в соответствии со схемой, представленной на рис. 1. С целью сокращения количества свободной воды, содержащейся в сырой биомассе, и уменьшения изопропилового спирта для ее экстракции опробованы предварительная сушка и вакуумная фильтрация биомассы. Сушку проводили при температуре 50 — 60 "С в течение 1 — 3 ч и остаточном давлении 1—2 мм рт. ст. Установлено, что величина вакуума в заданном интервале температур не влияет на количество удаляемой воды. Температура также не оказывает практически никакого влияния, главным является время сушки. Так, количество удаленной влаги за 2 ч составило 51,8 %, за 3 ч — 57,7 %.

Исследованы более мягкие условия удаления воды из сырой биомассы путем фильтрации при температуре окружающей среды 18 — 25 °С и остаточном давлении 10 — ПО мм рт. ст. на воронке Бюхнера через различные фильтровальные материалы (бязь, капрон). Через 2 ч фильтрации удалялось 43,9 % воды вместо 30 при повышенной температуре. Следовательно, значительное количество воды можно удалить при более низкой температуре. Для промывки высушенной биомассы использовали на 30 % меньше изопропилового спирта, чем для продукта с содержанием воды 75 %.

Содержание липидных соединений в использованном изопропиловом спирте от первой и второй промывок было одинаковым для исходной биомассы и биомассы после частичного удаления воды и составляло 0,3 и 0,25 %. Следовательно, несмотря на меньшее количество изопропилового спирта, взятого на промывку, экстракция липидных соединений происходила одинаково.

Данные, полученные на образце с молекулярной массой 500000, были проверены и подтверждены на образце с молекулярной массой 980000.

По результатам аналитического контроля содержания азота, золы и сухого остатка в сырой биомассе было установлено, что требуется не менее трех промывок изопропиловым спиртом. Оборотный изопропиловый спирт подвергался очистке перегонкой и по качеству соответствовал ГОСТ 9805-84 марки "технический" с содержанием 8,6 % воды при норме 13 %. Остальные стадии процесса очистки биомассы (сушка, дробление) проводились традиционным способом.

Далее исследовали выделение ПГБ и его очистку от клеточной массы при использовании хлороформа в качестве экстрагента (табл. 1).

Из данных табл. 1 следует, что концентрация ПГБ в растворе хлороформа составляла 0,5 — 0,25 %, что зависело от величины вакуума при фильтрации, а при глубоком вакууме и длительной фильтрации — от потерь растворителя. Увеличение количества клеточной массы на фильтре приводит к увеличению времени фильтрации, поэтому на данном фильтре можно проводить не более трех операций фильтрации. Эти результаты были учтены при создании опытной установки (рис. 2). Что касается концентрации ПГБ в клеточной массе, то судя по его содержанию при указанных параметрах, полимер оставался в клеточной массе. С целью выделения ПГБ и уменьшения его потерь была осуществлена четвертая дополнительная промывка клеточной массы хлороформом.

Количественное выделение ПГБ осуществляли путем дозирования раствора ПГБ в хлороформе в изопропиловый спирт (объемное соотношение 1:3) при постоянном перемешивании реакционной массы (табл. 2).

Как следует из табл. 2, технологический процесс высаждения полимера хлороформом из сухой биомассы и его промывки изопропиловым спиртом позволяют получить ПГБ высокой степени чистоты, требуемой для медицинской промышленности (Пат. 2333962 РФ).

Контроль исходных, промежуточных и конечных продуктов в процессе выделения и очистки ПГБ из сырой биомассы проводили в соответствии со схемой, представленной на рис. 3.

Состав исходной сырой биомассы, а также продуктов, образующихся в процессе её очистки, исследовали методом ИК-спектроскопии. ИК-спектры снимали на Фурье-спектрофотометре фирмы Perkin Elmer (США) 1710 области 4000 -400 см-1 в виде таблеток, запрессованных с КВт для твердых образцов, и в виде пленок, нанесенных на окошки KRS-5 или КВт для жидких (рис. 4). Содержание азота определяли по методу Кьельдаля, температуру и теплоту плавления образцов ПГБ — методом дифференциальной сканирующей калориметрии на приборе Perkin Elmer Diamond DSC. Зольность оценивалась по ГОСТ 15973-82. Сухой остаток определяли сушкой при температуре 105 °С до постоянной массы, содержание воды в растворителях — методом кулонометрического титрования с реактивом Фишера на влагомере мод. СА-02 фирмы Mitcubsi (Япония).

ИК-спектр сырой биомассы (рис.4, а) аналогичен спектру, приведенному в атласе Хюммеля. Отличие в спектре сырой биомассы наблюдается только в области поглощения гидрок-сильных групп воды, см': 3600 - 3400 (v ОН); 1640 (5 ОН); 700 - 600 (б ОН). После сушки образца интенсивность полос в области 3600 - 3400 и 1640 см-1 резко уменьшается, широкое поглощение в области 600 — 700 см1 исчезает. В ИК-спектре образца высушенной биомассы помимо основных полос, характерных для ПГБ, присутствуют дополнительные: 3300; 1650 и 1520 см1; изменяется соотношение полос 1229 и 1185 см1. Можно предположить, что наличие данных полос в спектре связано с присутствием в исследуемом продукте веществ с амидными группами (3300, 1650, 1520 см') и органическими фосфатами (1180 см1).

Общий спектр конечного продукта снят в метиленхлориде (рис. 4, б) и полностью соответствует приведенному в атласе Хюммеля. Спектр же конечного продукта, полученного из расплава, отличается увеличением интенсивности полосы 1185 см1 (возможен С-О-С, Р-О-С), изменением соотношения СН2-, СНз-групп в области валентных (2980 — 2850 см1), и 1385 см') колебаний. Можно предположить, что конечный продукт является не однородным или "подшитым", только растворимая в метиленхлориде фракция — "чистый"продукт.

Температуру и теплоту плавления образцов ПГБ определяли методом дифференциальной сканирующей калориметрии на приборе Perkin Elmer Diamond DSC на образце массой 3 — 6 мг, который помещали в алюминиевую чашку массой 18 — 19 мг, нагревали со скоростью 10 °С/мин и регистрировали изменение теплового потока между образом и эталоном сравнения.

Типичная зависимость мощности теплового потока образца от температуры нагрева представлена на рис. 5. Область плавления полимера 130 — 180 °С с максимумом при 178 °С. После плавления при температуре 256 °С наблюдается разложение полимера. Температура разложения остается постоянной как при нагреве на воздухе, так и в токе азота, что свидетельствует о механизме деполимеризации.

Для оценки термостойкости полимера была исследована его температура кристаллизации до и после термообработки. Термообработку проводили сразу после точки плавления вещества при 190 °С в течение 15 мин (рис. 6). На рисунке экзотермическому пику соответствует теплота кристаллизации, происходит уменьшение температуры кристаллизации (кривая 2), что свидетельствует об уменьшении молекулярной масса полимера при термостатировании в указанных условиях.

Уменьшение молекулярной массы сказывается на изменении пика плавления полимера (рис. 7), и проявляется в расщеплении эндотермического пика и снижении температуры плавления полимера. Предварительно было установлено, что скорость охлаждения расплава (200 и 5 °С/мин) незначительно влияет на температуру плавления и форму эндотермического пика.

Изобретение относится к биодеградируемым сополимерам; пленкам, включающим сополимеры; и поглощающим изделиям одноразового использования, таким как пеленки, санитарные салфетки и панталоны для пациентов, страдающих недержанием, включающим такие пленки.
Большое разнообразие поглощающих изделий, сконструированных таким образом, чтобы быть эффективными для поглощения жидкостей организма, таких как кровь, моча, менструальные выделения и им подобным, является хорошо известным. Продукты одноразового использования этого типа обычно включают определенного типа материал проницаемый для жидкости, для верхнего покрытия, поглощающую центральную часть и материал непроницаемый для жидкости, для нижнего покрытия. До сих пор такие поглощающие структуры изготавливались, например, с использованием для верхнего покрытия тканых, нетканых или пористых пленкообразующих полиэтиленовых или полипропиленовых материалов. Материалы для нижнего покрытия обычно включают гибкие полиэтиленовые покрытия. Материалы поглощающей центральной части обычно включают волокна из древесной пульпы или волокна из древесной пульпы в комбинации с поглощающими желирующими материалами. Один из аспектов таких поглощающих изделий до недавнего времени заключался в их одноразовом использовании. Хотя такие продукты в своей основе включают материалы, которые как полагали в конечном счете будут деградировать и хотя продукты этого типа вносят небольшой вклад в общие твердые отходы, производимые потребителями каждый год, тем не менее, существует необходимость в разработке таких продуктов одноразового использования из материалов, которые являются компостируемыми.

Обычный поглощающий продукт одноразового использования уже в большей степени является компостируемым. Обычная пеленка одноразового использования, например, состоит приблизительно на 80% из компостируемых материалов, например волокон из бумажной пульпы и им подобных. В процессе компостирования загрязняющие поглощающие изделия одноразового использования разрывают и смешивают с органическими отходами, по существу, до компостирования. После окончания компостирования, частицы, которые не подверглись компостированию, отсеивают. Таким образом, даже сегодняшние поглощающие изделия могут быть успешно переработаны на компостирующих заводах.

Тем не менее, существует необходимость в снижении количества некомпостируемых материалов в поглощающих изделиях одноразового использования. Существует конкретная необходимость в замене полиэтиленовых нижних покрытий в поглощающих изделиях пленками из компостируемого материала, непроницаемыми для жидкости, потому что нижнее покрытие обычно представляет один из наиболее некомпостируемых компонентов обычного поглощающего изделия одноразового использования.
Кроме того, будучи компостируемыми, пленки, примененные в качестве нижних покрытий для поглощающих изделий, должны удовлетворять многим другим эксплуатационным характеристикам. Например, смолы должны быть термопластичными, так чтобы могли быть применены обычные способы переработки пленки. Эти способы включают полив пленки или экструзию пленки с раздувом однослойных структур и полив или соэкструзию пленки с раздувом многослойных структур. Другие способы включают экструзионное покрытие одного материала на другой или с обеих сторон компостируемого субстрата, такого как другая пленка, нетканое волокно или бумажное волокно.

Еще и другие свойства являются существенными в операциях превращения продукта, где используют пленки для изготовления поглощающих изделий. Свойства, такие как предел прочности при растяжении, модуль упругости при растяжении, сопротивление раздиру и температура термического размягчения, определяют в значительной степени насколько хорошо пленка будет эксплуатироваться на перерабатывающих линиях.

Кроме вышеупомянутых свойств, необходимо учитывать свойства, предъявляемые конечным потребителем поглощающего изделия. Свойства пленки, такие как, ударная вязкость, сопротивление проколу и влагопропускание являются важными, так как они влияют на продолжительность эксплуатации поглощающего изделия и емкость в процессе носки.

Характеристики

Тип файла
Документ
Размер
6,05 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее