166090 (624937), страница 3
Текст из файла (страница 3)
(-) Zn | Zn(OK) 2 + KOH(40%) | Ag2O або AgO | Ag (+)
Сумарна реакція в цьому елементі
AgO + Zn = ZnO + Ag
Процес проходить у дві стадії: AgO відновлюється спочатку до Ag2O, далі до металічного срібла. ЕРС елементів з катодом AgO рівна 1,86 В, з катодом Ag2O - 1,58-1,60 В. При малій густині струму напруга падає на 0,3 В при переході від першої стадії до другої. Практично використовується лише друга стадія.
Після розряду акумулятора:
(-) Zn | ZnO, Zn(OK) 2 + KOH (40%) | Ag (+)
В таких акумуляторах на відміну від свинцевих і лужних електроліт в реакціях заряду і розряду не приймає участі, саме цьому його можна брати в малій кількості. Це дозволило сконструювати акумулятори, що мають дуже ефективну конструкцію: електроди знаходяться один біля одного і розділені тонким шаром целофану. Весь електроліт знаходиться в порах електродів. Срібно - цинкові акумулятори мають велику ємність, високу енергію і високу потужність на одиницю маси і об’єму, саме цьому вони широко застосовуються там, де необхідні акумулятори невеликого розміру.
2.4 ПАЛИВНІ ЕЛЕМЕНТИ
У наш час велика частина електроенергії виробляється на теплових електростанціях при спалюванні природних енергоносіїв (вугілля, нафти, природного газу). При цьому процес перетворення хімічної енергії палива в електричну проходить через три стадії: перетворення хімічної енергії у теплову при згоранні палива; далі - теплової енергії у механічну роботу у паровій машині; нарешті, перетворення механічної роботи в електроенергію у генераторі. На всіх цих стадіях втрачається енергія і коефіцієнт корисної дії (ККД) сучасних теплових електростанцій становить близько 40%, а для більшості електростанцій - 25%.
Термодинамічний аналіз, проведений ще в кінці XIX ст. ., показав, що в гальванічних елементах немає такого обмеження ККД, як у теплових машинах. У 1893 р. Нернст обчислив, що якби вдалося перетворювати хімічну енергію вугілля в електричну електрохімічним шляхом, то максимальний теоретичний ККД такого процесу становив би 99,75%. Однак через чисельні технічні труднощі перші працездатні паливні елементи вдалося створити лише у 30 - 40 - х роках ХХ ст. .
Паливними елементами називають гальванічні елементи, в яких електрохімічно активними речовинами слугують звичайні горючі речовини і кисень, а процесом генерування струму є окислення горючих речовин. При роботі елемента проводиться безперервна подача реагентів і відвідення продуктів реакції, так що склад системи практично не змінюється.
При роботі будь-якого хімічного джерела струму проходить сумарна хімічна реакція взаємодії окисника з відновником. Максимальна електрична робота, отримана при роботі джерела струму, рівна зменшенню ізобарного потенціалу для цієї реакції:
Перетворення енергії у електричну шляхом паливних елементів доволі складний процес. Максимальна електрична робота, отримана при складному перетворенні, визначається тепловим ефектом реакції
Найбільш реакційно здатним видом палива є водень. Воднево - кисневі елементи зазвичай виготовляють з застосуванням мілко дрібних вугільних або нікелевих електродів, що занурені в лужний розчин електроліту. Схематично такий елемент можна уявити в такому вигляді:
(
-) (Ni) H2 | KOH (30-40%) | O2(Ni) (+)
Малюнок 4. Воднево-кисневий паливний елемент
При роботі елемента на негативному електроді протікає електродна реакція:
На позитивному
Сумарна реакція
Теоретичне значення ЕРС воднево - кисневого елемента при 250С дорівнює 1,229 В і не залежить від складу розчину - електроліту.
При розряді воднево - кисневих елементів напруга тримається у межах 07, - 0,9 В, в залежності від густини розрядного струму на електродах (в лучних конструкціях елементів густина струму сягає 200-300 ма/см2).
Інші види газоподібного палива (оксид вуглецю, вуглеводні) практично можуть бути застосовані у паливних елементах тільки при підвищених температурах (вище 400-5000С). У таких високотемпературних елементах у якості електроліту використовують або розплави вуглецевих солей лужних металів, або тверді електроліти з аніонною (кисневою) проводністю.
Спроби безпосередньо використовувати тверде вугілля у паливних елементах поки безуспішні. Вугілля може бути використане тільки після попередньої газифікації його. Якщо газифікацію проводити за допомогою СО2, спостерігається наступна послідовність реакцій:
Газифікація
В паливному елементі
Сумарна реакція
Водень - кисневий елемент можна створити, наприклад, за допомогою двох платинових електродів, занурених у водний розчин гідроксиду калію. Один електрод омивається воднем, інший - киснем;
Pt(H2) | KOH, насичений H2 | KOH, насичений О2 | (O2) Pt.
У цьому елементі окиснення водню і відновлення кисню просторово розділені, і струм генерується у процесі реакцій:
Тобто сумарний процес зводиться до окиснення водню киснем з утворенням води. Істотним недоліком, такого паливного елемента є дуже мала густина струму. Для збільшення густини струму використовують підвищений тиск і температуру, спеціальні конструкції електродів, перемішування розчину тощо.
Розробка паливних елементів продовжується. Принципово доведена можливість використання деяких видів палива в паливних елементах і перетворення їх хімічної енергії в електричну з практичним ККД до 75 - 90%.
2.5 ХІМІЧНІ ДЖЕРЕЛА СТРУМУ НА ОСНОВІ НЕВОДНИХ ЕЛЕКТРОЛІТІВ
Розвиток техніки, яка зробила якісний стрибок у другій половині ХХ століття, істотно підвищив вимоги до джерел електричної енергії. Поява компактних ХДС стала дуже актуальною. Потрібні були ХДС, здатні зберігати заряд і працювати безупинно роками. Крім того зростає дефіцит кольорових металів, особливо срібла, що вимагає їхньої заміни іншими матеріалами. Рішення цих задач стало можливим на основі створення джерел струму з електролітами у неводних розчинниках.
У хімічних джерелах струму як відновники, як правило, використовують метали. Із зіставлення значень електродних потенціалів у ряді напруг металів випливає, що найбільш енергоємні анодні матеріали розташовані у верхньому лівому куті періодичної системи елементів. Теоретичні значення питомої енергії, що можуть забезпечити ці метали, складають (у Втгод/кг): для Li - 11757, Mg - 5216, Al - 4946, Са - 3837, Na - 3163. У той же час теоретичні значення питомої енергії для традиційних матеріалів ХДС дорівнюють: для Zn - 623, Fe - 423, Ni - 278, Cd - 190 Втгод/кг. Однак високі електродні потенціали роблять метали І, ІІ, ІІІ групи періодичної системи нестійкими у водному середовищі, що практично виключає їх використання у ХДС. Енергетичні можливості легких металів вдалося реалізувати лише після того, як було показано, що багато з них, і в першу чергу літій, стійкі і здатні анодно розчинятись у неводних розчинниках.
Існує ряд органічних сполук, які не містять у своїй молекулі рухливого атома водню і відносяться до класу апротонних диполярних розчинників (АДР.). В електролітах на основі цих розчинників літій не тільки може зберігатися на протязі багатьох років, але і виявляє поведінку, властиву рівноважним електродам. Зокрема, його потенціал підпорядковується рівнянню Нернста у широкому інтервалі концентрацій іонів літію, не залежить від перемішування розчину, швидко повертається до вихідного значення після малих катодних і анодних поляризацій.
Головним критерієм, за яким були прийняті до використання розчинники групи АДР, є їхня сумісність з літієм. У даний час відсутній строгий теоретичний підхід до вибору оптимального розчинника, тому у промисловому виробництві використовується ряд різних розчинників. До них відносяться у першу чергу прості і складні ефіри, головним чином циклічні: 1,2 - диметоксіетан (1,2 - ДМЕ), 1,3 - діоксолан (1,3 - ДО), метил форміат (МФ), пропілен карбонат (ПК), тетрагідрофуран (ТГФ).
Термодинамічними розрахунками було доведено, що система Li - АДР не є стійкою. Значення потенціалів для реакцій взаємодії літію з АДР можуть досягати 2,5 - 4,3 В, а продуктами реакції є сполуки, нерозчинні в АДР.
АДР мають невисоку сольватуючу здатність, і внаслідок цього в них добре розчиняються лише деякі літієві солі. Це, головним чином, сполуки із комплексними аніонами, що містять як центральний атом елементи третьої і п’ятої груп періодичної системи. Як електроліти у промисловому виробництві використовуються LiAs6, LiBF4, LiAlCl4, LiCl4, LiBr. Усі ці солі сильно гігроскопічні, що значно ускладнює і здорожує виробництво через труднощі глибокого осушування та необхідності захисту всього технологічного процесу від впливу атмосферної вологи.
Зараз у літієвих ХДС використовуються як тверді, так і рідкі катодні матеріали. Високий електродний потенціал літію дозволяє застосовувати не занадто активні окислювачі і при цьому одержувати електродні пари з ЕРС, більшою 3 В. Промисловість випускає елементи з простими (MnO2, CuO, V2O5) і складними (2PbOPbO2, 2PbOBi2O3, Ag2OCrO3) оксидними катодами, з катодами з SO2, SOCl2.
Розряд негативного літієвого електрода веде до його іонізації:
Присутність на поверхні літію оксидно - сольової плівки впливає на його потенціал і швидкість розряду.
У залежності від природи катодного матеріалу схеми електрохімічних реакцій можна зобразити рівняннями:
Найбільш поширене виробництво циліндричних та дискових елементів різних конструкцій.
Створення ХДС на основі неводних електролітів стимулювало розвиток теоретичних уявлень в області теорії розчинів, поверхневих явищ, нових типів неорганічних сполук, нестехіометричних сполук, теорії пористих електродів тощо. Теоретичні досягнення, у свою чергу, дозволяють очікувати істотного поліпшення нових поколінь ХДС.
ВИСНОВКИ
В наш час залишаються дуже актуальними акумулятори, адже більшість автомобільних транспортних засобів не може обходитись без цих хімічних джерел струму. Також дуже поширені цинково-манганові елементи, що дістали назви звичайної батарейки. Всі вони є надійними джерелами струму і слугують порівняно тривалий час.
Вичерпність природних ресурсів призводить до створення нових хімічних джерел струму, зараз ведеться активна робота по їх створенню. І допоможуть в цьому лужні метали. Вже зроблені перші кроки - створено хімічні джерела струму на основі літію, що знаходиться у контакті з органічним апротонним розчинником. Літієві джерела струму зарекомендували себе як дуже надійні. Зараз важко зустріти галузь деб не застосовувались такі елементи. Батареї мобільних телефонів і рацій, батарейки для годинників, калькуляторів, різноманітних приладів - майже скрізь працюють літієві хімічні джерела струму.
Саме вони стають найбільш актуальними у подальшому розвитку суспільства.
Паливні елементи є не актуальні, адже вони дуже енергоресурсоємкі, а коефіцієнт корисної дії порівняно низький.
Акумулятори також ще застосовуються, але вже існують пристрої, значно спрощеної дії ніж акумуляторів, і виконують ті ж самі функції.
Отже ера хімічних джерел струму продовжується, і невпинно крокує вперед.
ВИКОРИСТАНА ЛІТЕРАТУРА
-
Герасимов Я.И., Курс физической химии, т. ІІ, издание 2, испр., М., "Химия", 1973.
-
Лебідь В.І., Фізична хімія, Харків, "Фоліо", 2005.
-
Льоцци М., История физики, М., "Мир", 1970.















