164408 (624758), страница 3

Файл №624758 164408 (Портфельная теория Марковица) 3 страница164408 (624758) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

(5)

где - обозначает ковариацию доходностей ценных бумаг i и j.

Таким образом:

1. Подход Марковица к проблеме выбора портфеля предполагает, что инвестор старается решить две проблемы: максимизировать ожидаемую доходность при заданном уровне риска и минимизировать неопределенность (риск) при заданном уровне ожидаемой доходности.

2. Ожидаемая доходность служит мерой потенциального вознаграждения, связанного с портфелем. Стандартное отклонение рассматривается как мера риска портфеля.

3. Кривая безразличия представляет собой различные комбинации риска и доходности, которые инвестор считает равноценными.

4. Предполагается, что инвесторы рассматривают любой портфель, лежащий на кривой безразличия выше и левее, как более ценный, чем портфель, лежащий на кривой безразличия, проходящей ниже и правее.

5. Предположение о ненасыщаемости и избегании риска инвестором выражаются в том, что кривые безразличия имеют положительный наклони выпуклы.

6. Ожидаемая доходность портфеля является средневзвешенной ожидаемой доходностью ценных бумаг, входящих в портфель. В качестве весов служат относительные пропорции ценных бумаг, входящих в портфель.

7. Ковариация и корреляция измеряют степень согласованности изменений значений двух случайных переменных. Стандартное отклонение портфеля зависит от стандартных отклонений и пропорций входящих в портфель ценных бумаг и, кроме того, от ковариаций их друг с другом.


2. Портфельный анализ

2.1 Выбор оптимального портфеля

В предыдущей главе была рассмотрена проблема выбора портфеля, с которой сталкивается каждый инвестор. Кроме того, в ней был представлен подход Гарри Марковица к решению данной проблемы. При таком подходе инвестор должен оценить альтернативные портфели с точки зрения их ожидаемых доходностей и стандартных отклонений, используя кривые безразличия. В случае избегания риска инвестором портфель, лежащий на кривой безразличия, проходящей выше и левее остальных кривых, будет выбран для инвестирования.

Как было отмечено ранее, из набора N ценных бумаг можно сформировать бесконечное число портфелей. Рассмотрим ситуацию с компаниями А, Б и С, когда N равно трем. Инвестор может купить или только акции компании А, или только акции компании Б, или некоторую комбинацию акций двух компаний. Например, он может вложить половину средств в одну, а половину в другую компанию, или 75% в одну, а 25% в другую, или же 33% и 67% соответственно. В конечном счете инвестор может вложить любой процент (от 0% до 100%) в первую компанию, а остаток во вторую. Даже без рассмотрения акций компании С, существует бесконечное число возможных портфелей для инвестирования. Необходимо ли инвестору проводить оценку всех этих портфелей? К счастью, ответом на этот вопрос является "нет". Объяснение того факта, что инвестор должен рассмотреть только подмножество возможных портфелей, содержится в следующей теореме об эффективном множестве.

Инвестор выберет своп оптимальный портфель из множества портфелей, каждый из которых:

1. Обеспечивает максимальную ожидаемую доходность для некоторого уровня риска.

2. Обеспечивает минимальный риск для некоторого значения ожидаемой доходности.

Набор портфелей, удовлетворяющих этим двум условиям, называется эффективным множеством или эффективной границей. Достижимое множество представляет собой все портфели, которые могут быть сформированы из группы в N ценных бумаг. Это означает, что все возможные портфели, которые могут быть сформированы из N ценных бумаг, лежат либо на границе, либо внутри достижимого множества. В общем случае, данное множество будет иметь форму типа зонта. В зависимости от используемых ценных бумаг, оно может быть больше смещено вправо или влево, вверх или вниз.

Инвестор должен нарисовать свои кривые безразличия на одном рисунке с эффективным множеством, а затем приступить к выбору портфеля, расположенного на кривой безразличия, находящейся выше и левее остальных. Этот портфель будет соответствовать точке, в которой кривая безразличия касается эффективного множества. Желание находиться на какой-то конкретной кривой не может быть реализовано, если данная кривая нигде не пересекает множество достижимости. Чисто интуитивно теорема об эффективном множестве кажется вполне рациональной. В предыдущей главе было показано, что инвестор должен выбирать портфель, лежащий на кривой безразличия, расположенной выше и левее всех остальных кривых. В теореме об эффективном множестве утверждается, что инвестор не должен рассматривать портфели, которые не лежат на левой верхней границе множества достижимости, что является ее логическим следствием.

Кроме того установлено, что кривые безразличия для инвестора, избегающего риск, выпуклы и имеют положительный наклон. Эффективное множество в общем случае вогнуто и имеет положительный наклон, т.е. отрезок, соединяющий любые две точки эффективного множества, лежит ниже данного множества. Это свойство эффективных множеств является очень важным, так как оно означает, что существует только одна точка касания эффективного множества и кривых безразличия.

В начале 50-х годов Гарри Марковиц описал решение данных проблем. Используя математический метод, известный как квадратичное программирование, инвестор может обработать ожидаемые доходности, стандартные отклонения и ковариации для определения эффективного множества. Имея оценку своих кривых безразличия, отражающую их индивидуальный допустимый риск он может затем выбрать портфель из эффективного множества.

Используя средства обработки информации, доступные инвестору в то время, было практически невозможно вычислить эффективное множество даже для нескольких сотен ценных бумаг. Однако с появлением дешевых и высокопроизводительных компьютеров в 80-х годах 20 века, а также с развитием сложных моделей риска стало возможным определение эффективного множества для нескольких тысяч ценных бумаг за несколько минут. Необходимое компьютерное оборудование и программное обеспечение являются доступными фактически для любого инвестиционного института. В действительности данный процесс стал настолько банальным, что даже приобрел собственную терминологию. Использование компьютера для определения эффективного множества и формирования оптимального портфеля в разговорном языке называется оптимизацией. Портфели "оптимизируются", а про инвесторов говорят, что они применяют оптимизационную технику. Несмотря на доступность "оптимизаторов", относительно небольшое число менеджеров по инвестициям в действительности используют их при формировании портфеля. Вместо этого они в основном полагаются на некоторый набор правил и закономерностей.

Большинство менеджеров по инвестициям хорошо осведомлены о концепциях Марковица по формированию портфеля и о доступных технологиях, так как являются выпускниками школ бизнеса, в которых данные концепции детально рассматриваются. Причиной сопротивления являются два момента: профессиональные интересы и несоответствия в практическом воплощении концепций.

С точки зрения профессиональных факторов большинство инвесторов просто не чувствуют себя комфортно при использовании качественных методов. В их методах принятия решений подчеркивается значение интуиции и субъективных решений. Использование оптимизационной техники в формировании портфеля требует наличия системной и формальной структуры принятия решений. Специалисты по анализу ценных бумаг должны принять на себя ответственность за формирование количественных прогнозов ожидаемой доходности и риска. Управляющие портфелями должны выполнять решения компьютера. В результате этого "оптимизаторы" уничтожают "артистизм и грацию" управления инвестициями. Кроме того, с их внедрением возрастает влияние новой породы профессионалов по инвестициям - числовых аналитиков, которые координируют получение и применение оценок риска и доходности. Авторитет, приобретаемый числовыми аналитиками, уменьшает влияние аналитиков и менеджеров портфелей, использующих традиционные методы. Что касается перспектив применения "оптимизаторов", то здесь существуют серьезные проблемы. В частности, они имеют тенденцию к созданию чисто интуитивных портфелей, не подходящих для реальных инвестиций. Данная ситуация объясняется не столько проблемами "оптимизаторов", сколько ошибками операторов, обеспечивающих ввод данных. Здесь работает парадигма GIGO ("мусор на входе - мусор на выходе"). "Оптимизаторы" предпочитают ценные бумаги, обладающие высокими ожидаемыми доходностями, малыми стандартными отклонениями и малой величиной ковариации с другими ценными бумагами. Очень часто при оценке этих величин используется информация из старых баз данных, содержащих тысячи ценных бумаг. До тех пор пока информация о доходности и риске не будет тщательно проверена, ошибки (например, преуменьшение стандартного отклонения ценных бумаг) могут привести к тому, что "оптимизатор" будет рекомендовать произвести покупку некоторых ценных бумаг, исходя из неправильных предпосылок. Даже если информация является выверенной, экстремальные исторические события могут привести "оптимизатор" к практически неверным решениям.

До тех пор пока программа не будет принимать во внимание операционные издержки, "оптимизаторы" будут демонстрировать плохую привычку к операциям, приводящим к большому обороту, и рекомендациям о покупке ценных бумаг с низкой ликвидностью. Высокий оборот связан с существенными изменениями в портфеле от периода к периоду. Высокий оборот может являться причиной неприемлемо высоких операционных издержек, отрицательно сказывающихся на функционировании данного портфеля. Ликвидность означает возможность реального приобретения ценных бумаг, выбранных "оптимизатором". Выбранные бумаги могут обладать желательными характеристиками по доходности и риску, но продаваться в незначительных количествах, не позволяющих институциональным инвесторам приобрести их без ощутимых дополнительных расходов на покупку.

Существуют различные решения данных проблем, начиная с аккуратной проверки вводимой информации и кончая введением ограничений на максимальный оборот и минимальную ликвидность. Тем не менее ничто не может заменить прогноз квалифицированного специалиста о доходности и риске ценных бумаг, основанный на правильном применении понятия рыночного равновесия. Профессиональные проблемы и проблемы практического воплощения дают менеджерам по инвестициям удобный повод избегать применения "оптимизаторов" и сконцентрироваться на использовании традиционных методов формирования портфелей. Однако рассмотрение количественных методов формирования портфелей очень важно. Повышающаяся эффективность финансовых рынков заставляет менеджеров институциональных инвесторов обрабатывать больше информации о большем количестве ценных бумаг и с большей скоростью, чем когда-либо раньше. Как следствие, они вынуждены в большей степени увеличить использование количественных инструментов анализа инвестиций. Фактически они стали более восприимчивы к необходимости создания диверсифицированных портфелей, имеющих наивысший уровень ожидаемой доходности при удовлетворительном уровне риска.

Предположим, что доходность обыкновенной акции за данный период времени (например, месяц) связана с доходностью за данный период акции на рыночный индекс. В этом случае с ростом рыночного индекса, вероятно, будет расти и цена акции, а с падением рыночного индекса, вероятно, будет падать и цена акции. Один из путей отражения данной взаимосвязи носит название рыночная модель:

(6)

где riI - доходность ценной бумаги i за данный период; rI - доходность на рыночный индекс I за этот же период; - коэффициенты смещения и наклона соответственно; - случайная погрешность.

Предположив, что коэффициент наклона положителен, из уравнения (6) можно заметить следующее: чем выше доходность на рыночный индекс, тем выше будет доходность ценной бумаги (заметим, что среднее значение случайной погрешности равняется нулю).

Случайная погрешность просто показывает, что рыночная модель не очень точно объясняет доходности ценных бумаг. Другими словами, когда рыночный индекс возрастает на 10% или уменьшается на 5%, то доходность ценной бумаги не обязательно равняется 14% или - 4% соответственно. Разность между действительным и ожидаемым значениями доходности при известной доходности рыночного индекса приписывается случайной погрешности. Таким образом, если доходность ценной бумаги составила 9% вместо 14%, то разность в 5% является случайной погрешностью. Случайную погрешность можно рассматривать как случайную переменную, которая имеет распределение вероятностей с нулевым математическим ожиданием и стандартным отклонением.

2.2 Модель Марковица

Классическая формулировка проблемы выбора портфеля относится к инвестору, который должен выбрать из эффективного множества портфель, представляющий собой оптимальную комбинацию ожидаемой доходности и стандартного отклонения, исходя из предпочтений инвестора относительно риска и доходности. На практике, однако, это описание неадекватно характеризует ситуацию, с которой сталкивается большинство организаций, управляющих деньгами институциональных инвесторов.

Определенные типы институциональных инвесторов, такие, как, например, пенсионные и сберегательные фонды, обычно нанимают внешние фирмы в качестве агентов для инвестирования своих финансовых активов. Эти менеджеры обычно специализируются на каком-то одном определенном классе финансовых активов, таком, например, как обыкновенные акции или ценные бумаги с фиксированным доходом. Клиенты устанавливают для своих менеджеров эталонные критерии эффективности, которыми могут быть рыночные индексы или специализированные эталоны, отражающие специфику инвестиций (растущие акции с малой капитализацией).

Характеристики

Тип файла
Документ
Размер
831,49 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6480
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее