164115 (624625), страница 3
Текст из файла (страница 3)
Оскільки ціни активів та їх відношення не можуть бути від'ємними, то в якості доходності активу (rt) зазвичай приймаються логарифмічні прирощування значень цін [18, c. 143]:
, де
rt – доходність активу в період часу t;
Pt – ціна активу в період часу t;
Pt-1 – ціна активу в період часу t-1.
Якщо логарифми відношень цін (безперервно нарощена доходність) розподі-лені нормально, то ці відношення будуть відповідати логнормальному розподілу:
, де
- нормальний закон розподілу;
- середнє значення доходності активу,
- дисперсія доходності активу.
Досить часто на практиці замість логарифмічних прирощувань використаються звичайні процентні зміни цін, оскільки, як можна переконатися шляхом розкладання в ряд Тейлора, для незначних
ці величини будуть приблизно однаковими [18, c. 144]:
У випадку нормально розподіленої випадкової величини довірчий інтервал (1 -
) завжди характеризується єдиним параметром – квантілем
, що показує положення певного значення випадкової величини (симетрично в обох хвостах розподілу) щодо середнього (E[rt] =
), вираженого в кількості стандартних відхилень доходності портфелю (
).
, де
- волатильність (мінливість) активу;
- значення параметра доходності активу;
- середня очікувана доходність;
n - кількість днів (спостережень).
Так, для найбільше часто застосовуваних значень довірчого інтервалу
в 95% й 99% відповідні квантілі будуть дорівнювати 1,65 й 2,33 (табличні дані) стандартних відхилень доходності портфелю.
На теоретичному рівні величина VaR в параметричному методі визначається формулою
і відображає не ціну (або вартість) як таку, а її найбільш очікувану зміну за один день.
Досить часто знак «-» опускають й оперують абсолютним значенням.
Для часових горизонтів, що перевищують один день, припускають, що дисперсія змін цін пропорційна тривалості часового горизонту прогнозування, що дозволяє одержати оцінку ринкового ризику шляхом простого масштабування одноденної величини, тобто VaR в цьому випадку розраховується за формулою:
.
Варто зазначити, що така оцінка буде прийнятною лише для порівняно невеликих інтервалів часу (не більше 10-15 днів), при цьому її точність падає зі збільшенням часового горизонту [18, c. 145].
Таким чином, центральною проблемою під час розрахунку величини VaR коваріаційним методом є знаходження дисперсії доходності фінансового інструменту.
2.2 Обчислення ризику на ринку акцій українських емітентів
за даними ПФТС за 2006 р.
На практиці варіаційно-коваріаційний метод розрахунку VaR має нижче наведений алгоритм.
На першому етапі визначається вихідний ряд показників (глибина розрахунку) - значень вартості певного портфелю для усіх фіксованих в історичному періоді станів ринку за 1-2 роки . У найпростішому випадку одного інструмента розглядається історичний ряд ринкових цін (котирувань), одержаних з показників ринкової статистики.
Як приклад застосування коваріаційного методу для оцінки ризиків на ринку акцій українських емітентів, за вихідний показник візьмемо індекс акцій ПФТС за 2006 рік (243 дні). Тобто, глибина розрахунку VaR складає 1 рік.
Рис. 1. Динаміка значень індексу ПФТС у 2006 р.
На другому етапі отриманий часовий ряд переводиться в ряд відносних змін за формулою:
Наведеному вище ряду значень відповідають наступні відносні зміни індексу на рисунку 2.
Рис. 2. Щоденні зміни значень індексу ПФТС у 2006 р.
Третім етапом, і першим специфічним кроком варіаційно-коваріаційного способу розрахунку VAR, є визначення параметрів розподілу, що найкращим чином наближають фактичний розподіл розглядуваного показника до нормального.
З точки зору статистики нормальний розподіл описується двома параметрами - математичним очікуванням і стандартним відхиленням - які для наведеного прикладу індекса ПФТС дорівнюють, відповідно, 0,16% й 1,15%.
Рисунок 3 ілюструє прийнятну точність наближення змін індексу ПФТС до нормального розподілу.
Рис. 3. Фактичний розподіл змін індексу ПФТС у 2006 р.
Далі визначається значення оберненого нормального розподілу відповідно до отриманих раніше параметрів:
-
встановленим рівнем довіри
- для короткої позиції, ризик для якої оцінюється по позитивних змінах, або -
оберненим довірчим рівнем (тобто 1 -
) - для довгої позиції (для яких ризик проявляються лише в зниженні ринкової ціни) й, відповідно, негативних змінах.
Для даного прикладу індексу ПФТС найбільш типовим значенням довірчого рівня відповідають наступні значення оберненого нормального розподілу (таблиця 1).
Таблиця 1
Відносне значення оберненого нормального розподілу.
Параметричне ( варіаційно-коваріаційне) моделювання
| Рівень довіри | Найбільш ймовірне значення | Найменше значення VaR для довгої позиції | Найбільше значення VaR для короткої позиції |
| 95% | 0,16% | 1,7% | 2,1% |
| 97% | 2,0% | 2,3% | |
| 99% | 2,5% | 2,8% |
Однак отримані значення VaR рівновіддалені від середнього значення лінійного тренду (VaR 2,0% та 2,3% з ймовірністю 97%), а тому варіаційно-коваріаційне моделювання не враховує асиметрію розподілу. Отже, різноманітні ймовірносні характеристики додатних і від’ємних коливань відносно тренда (наприклад, раптові, але суттєві падіння цін в умовах постійного незначного приросту) в цій моделі не враховуються.
На завершальному етапі отримані значення - відносна оцінка VAR - переводяться в абсолютний еквівалент - у випадку з використанням прямих вартісних ринкових або розрахункових показників (котирувань, курсів, індексів цін) множенням на поточну вартість позиції. Розрахунок абсолютного значення VaR для індексу ПФТС на 03.03.2006 (поточна вартість індексу = 432,83) подано в таблиці 2. Отже, інвестувавши у фондовий інструмент ПФТС 03.03.2006 року, ми могли б максимально втратити 9,09 пункти цього індексу протягом найближчої доби з ймовірністю 95% та глибиною розрахунку в 1 рік, тобто поточна вартість інструменту максимально могла б знизитися до позначки 423,74.
З ймовірністю 99% (рівнем довіри, рекомендованим Базельським комітетом з питань банківського нагляду) протягом 24 годин ми не могли б втратити більше, ніж 12,12 пункти індексу (мінімальна поточна вартість інструменту могла б становити 420,71).
Таблиця 2
Абсолютне значення VaR на 3.03.2006.
Параметричне ( варіаційно-коваріаційне) моделювання
| Рівень довіри | Найменше значення VAR | Найбільше значення VAR |
| 95% | 7,36 | 9,09 |
| 97% | 8,66 | 9,96 |
| 99% | 10,82 | 12,12 |
Представлений вище алгоритм відповідає розрахунку VaR для 1 інструмента. Для диверсифікованих портфелів розрахунок здійснюється за аналогічною схемою, але з використанням більш складного матричного математично-статистичного інструментарію.
Таким чином, варіаційно-коваріаційний метод розрахунку VaR є досить вдалим та прийнятним для оцінки ризику змін вартості фінансових інструментів. Він відрізняється концептуальною і розрахунковою простотою. Зміна вартості фінансового активу в цьому методі являє собою лінійну комбінацію доходностей факторів ризику, що мають нормальний розподіл. Такий підхід дозволяє розраховувати показник VaR на основі тільки поточної вартості портфелю та оцінок мінливості доходності факторів ризику, що особливо зручно для великих диверсифікованих портфелів. Серед інших переваг методу – відносно невеликі витрати на збір первинних даних, швидкість розрахунку (в методах стохастичного моделювання - метод Монте-Карло, історичного моделювання - робиться повна переоцінка портфелю), задовільна точність оцінки VaR в більшості випадків практичного застосування.
ІІІ МІЖНАРОДНИЙ ДОСВІД ЗАСТОСУВАННЯ VаR-АНАЛІЗУ
Історично вперше концепція ризикової вартості почала використовуватися великими банками наприкінці 1980-х - початку 1990-х рр. для вимірювання сукупного ризику трейдингового портфеля. Вважається, що ідея VaR належить Деннісу Везерстоуну, голові ради директорів банку J.P. Morgan, який хотів щодня в 16:15 одержувати звіт про максимальні втрати по всіх трейдингових позиціях у банку, очікуваних у найближчі 24 години. Цей звіт повинен був поміщатися на одній сторінці і бути зрозумілим раді директорів банку. Він був розроблений на початку 1990-х рр. і одержав популярність як “Звіт 415” [22].
У 1993 р. термін “Value-at-Risk” вперше з'явився в публічному документі, у доповіді Derivatives: practices and principles, підготовленому J.P. Morgan за замовленням “Групи Тридцяти” (G30), некомерційної організації, яка об’єднує найбільші фінансові організації США. У жовтні 1994 р. банк J.P. Morgan опублікував систему RiskMetrics™ і розмістив в Інтернеті у відкритому доступі її докладний опис. Водночас банк розробив програмний пакет FourFifteen по обчисленню VaR на основі методології RiskMetrics™. Завдяки маркетинговій кампанії з поширення RiskMetrics™ про концепцію ризикової вартості стало відомо менш великим фінансовим організаціям, нефінансовим корпораціям та інституціональним інвесторам. Швидкому поширенню RiskMetrics™ також сприяли невисока вартість ($25 тис.) і простота експлуатації первинного програмного пакета, виконаного на основі MS Excel у комбінації з елементами Visual Basic [22].
Уже в 1994 р. при проведенні в США опитування дилерів цінних паперів 43% всіх респондентів заявили, що вони використовують той або інший варіант VaR, а 37% повідомили про свій намір почати застосовувати його до кінця 1995 р. За даними опитування, проведеного в 1995 р. Нью-Йоркською школою бізнесу, 60% пенсійних фондів використають VaR. У 1998 р. група RiskMetrics™ вийшла зі складу J.P. Morgan і, будучи самостійною організацією, займається дослідженнями в області ринкового і кредитного ризику. [24]
Стимулом до поширення VaR серед нефінансових корпорацій стало рішення американської Комісії з цінних паперів і бірж (Securities & Exchange Commission - SEC). У 1997 р. SEC установила для всіх підзвітних їй компаній правила з обов'язкового розкриття інформації про ринкову вартість використовуваних деривативів і фінансових активів, чутливих до коливань фінансових ринків. Відповідно до нових правил, VaR був однієї з трьох методик розрахунків, дозволених для обов'язкового розкриття інформації. У результаті організації, які використовували у своїй діяльності деривативи і фінансові інструменти, піддані значним коливанням ринкової вартості, почали проявляти значно більший інтерес до методів обчислення VaR. Водночас різко підвищився попит на консалтингові і програмні послуги з обчислення VaR.
Після того як концепція VaR стала популярною серед нефінансових корпорацій, з'явилася потреба у створенні корпоративної версії VaR, яка відображає специфіку ризику в нефінансових корпораціях, що з погляду ризику різко відрізняються від банків. Методологія кількісного виміру ризиків добре розроблена для ліквідних активів. Більш того, є великі і легко доступні дані про ліквідні фінансові активи. Більшість же активів нефінансових фірм є неліквідними. Для нефінансових корпорацій основним ризиком є ризик зниження операційних грошових потоків. Тому ключовою вартісною метрикою ризику є кеш-фло в умовах ризику, або C-Fa. Часовий горизонт для обчислення C-Fa, як правило, набагато довший від горизонту для обчислення VaR і варіюється від одного до двадцяти кварталів. При обчисленні C-Fa використовуються не лише базові фінансові фактори ризику, але й специфічні для корпорації фактори, які впливають на операційні грошові потоки, наприклад, зміна попиту на продукцію компанії, цінова політика конкурентів, галузеві результати НІОКР. При створенні цього різновиду VaR модель операційних грошових потоків повинна бути інтегрована з моделлю поведінки фінансових факторів [25].















