151879 (622005), страница 2
Текст из файла (страница 2)
Конденсаторне зварювання. Для зварювання термопар застосовуються близькі за робочими параметрами зварювальні машини ТКМ-4, ТКМ-7, ТКМ-8. При подачі напруги на вхідні клеми машини первинна обмотка стабілізуючого випрамляючого трансформатора СТВ отримує живлення через вимикач. Одразу після ввімкнення через селеновий двохнапівперіодний випрямляч починається зарядка батареї конденсаторів. Зарядка максимальної ємності продовжується не більше 0,5 с. Ємність конденсаторної батареї визначається числом і положенням гнізд штекерів, що вмикаються у верхньому ряду перемикача.
При натисненні на педаль машини електроди зближуються і стискають зварювальний виріб, потім відбувається перемикання рухомої планки перемикача із правого положення в ліве. При цьому розмикається коло зарядження конденсаторів і негайно починається їх розрядження на первинну обмотку зварювального трансформатора, коефіцієнт трансформації якого регулюється перестановкою штекера в нижньому ряді гнізд перемикача. Індукування у вторинній обмотці трансформатора імпульсу струму обумовлює зварювання деталей, затиснених між електродами машини.
Принципова схема установки конденсаторного зварювання зображне на рис.3.
Рис.3.
За допомогою машини можна зварювати дроти діаметром від 0,05 до 1,00 мм і приварювати їх до металевих поверхонь. Оскільки час зварювання триває мілісекунди, зона прогрівання незначно перевищує діаметр провідника.
Зварювання в оптичному зображенні сонця чи плазмової дуги може виконуватися в повністю інертному середовищі без забруднення домішками. Оптична система з великою світлосилою дозволяє отримувати в зображенні зведену температуру, яка перевищує половину температури джерела випромінювання. Із серійних плазмово-дугових оптичних пристроїв можна порекомендувати установку "Уран". Висока чистота середовища зварювання дозволяє отримувати в таких пристроях найбільш чисті сплави.
7. Термопари для вимірювання низьких температур
Характерною особливістю термоелектричного методу вимірювання низьких температур являється те що із зменшенням температури погіршуються умови генерації термоЕРС.
При переході в стан надпровідності термоелектричний ефект Зеєбека, на якому оснований принцип дії термопар, очевидно, повністю зникає.
Термопара мідь - константан в практиці вимірювання низьких температур отримала найбільш широке застосування.
Номінальна статична характеристика термопари мідь - константан для діапазону температур 2…273 К наведена в табл.2.
Таблиця 2.
Т, К | α, мкВ/град | Т, К | α, мкВ/град | |
3 | - 0,165 | 153 | - 25,105 | |
33 | - 8,150 | 173 | - 27,406 | |
53 | - 12,170 | 193 | - 29,616 | |
73 | - 15,127 | 213 | - 31,759 | |
93 | - 17,752 | 233 | - 33,778 | |
113 | - 20,272 | 253 | - 35,715 | |
133 | - 22,715 | 273 | - 37,163 |
На відміну від електронеоднорідності з чистих металів сплави часто виходять за рамки потреб по неоднорідності, що пред’являється до термоелектронів. Особливо це відноситься до константану, вибір якого для вимірювання низьких температур потребує особливої ретельності і уваги. Для термопар придатний тільки термопарний константан. Звичайна термоелектрична мідь задовольняє потреби по неоднорідності. Як видно з табл.2, термоЕРС термопари мідь - константан зменшується із збільшенням температури. При температурі нижче потрійної точки водню (13,81 К) використовуються сплави Кондо, значно більш ефективні, ніж термопара мідь - константан в діапазоні температур.
Висновки
Саме термопару мідь - константан ми використовували на лабораторіях спеціалізації для визначення коефіцієнта термоЕРС досліджуваного зразка InSb.
А також виконували градюювання термопари за допомогою еталонного рідинного термометра, та отримали наступну графічну заледність E (t) подану на рис.4.
Рис.4.
Потім, взявши дві точки на прямій, використали вираз для знаходження коефіцієнта термоЕРС.
Отримане експериментальне значення α близьке до табличного значення коефіцієнта термоЕРС (αтабл = 39 мкВ/град). Похибка має місце за рахунок наступних недоліків рідинного термометра:
-
інерційноності показів;
-
мертвого ходу;
-
можливої нециліндричності форми капіляра.
А також похибка могла бути спричинена від неточності підтримання температури холодного спаю.
На відміну від рідинних термометрів, недоліками яких є недостатня точність і чутливість, малий вимірювальний діапазон неможливість дистанційних вимірів та ін., то термопари цих недоліків не мають.
Коефіцієнт термоЕРС добре відомий для більшості термопар. Оскільки малі напруги можна виміряти з великою точністю (за допомогою гальванометра чи потенціометра), то цим можна скористатись для вимірювання температури з точністю до 0,001о С.
За допомогою термопари можна вимірювати температуру в широкому інтервалі (-200о С ÷ 1600о С).
Список використаних джерел
-
Калашников С.Г. Електрика. навчальний посібник для університетів. Пер з 2-го рос. вид. - К.: Радянська школа, 1964, - 630 с.
-
Геращенко О.А., Брунов А.Н. Температурные измерения. Справочник. - К.: Наукова думка, 1984, - 496 с.
-
Дущенко В.П., Носомок В.М. Фызичний практикум. - К.: Радянська школа, 1965., - 336 с.
-
Термопары. - Вікіпедіа. Вільна енциклопедія. Інтернет. http://ru. wikipedia.org/wiki/Термопары. (19.12.2009).
Размещено на Allbest.ru